inger

pr

NS

P. Cardoso

»
L]

Compilation Techniques
for Reconfigurable Architectures

Joao M. P. Cardoso « Pedro C. Diniz

Compilation Techniques
for Reconfigurable
Architectures

@ Springer

Jodo M. P. Cardoso

Technical University of Lisbon/IST
INESC-ID, Rua Alves Redol n.9
1000-029 Lisboa, Portugal
jmpc@acm.org

ISBN: 978-0-387-09670-4
DOI: 10.1007/978-0-387-09671-1

Library of Congress Control Number: 2008929498

(© 2009 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

Pedro C. Diniz

Technical University of Lisbon/IST
INESC-ID, Rua Alves Redol n.9
1000-029 Lisboa, Portugal
pedro@isi.edu

e-ISBN: 978-0-387-09671-1

or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

to proprietary rights.
Printed on acid-free paper

springer.com

Trademarked names may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, we use the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement
of the trademark. All trademarks mentioned in this book are the property of their
respective owners.

ARM® is a registered trademark of ARM, Ltd.

Cantata® is a registered trademark of Khoral, Inc.

CoCentric' " is a trademark of Synopsys, Inc.

Excalibur' " is a trademark of Altera, Corp.

Java isa registered trademark of Sun Microsystems, Inc.
MATLAB® is a registered trademark of MathWorks, Inc.
MicroBlaze® is a registered trademark of Xilinx, Inc.

MIPS® is a registered trademark of MIPS Technologies, Inc.
Nios®and Nios-II® are registered trademarks of Altera, Corp.
PowerPC® is a registered trademark of the IBM, Corp.

Stratix " is a trademark of Altera, Corp.

Verilog® is a registered trademark of Cadence Design Systems, Inc.
VirtexTM, Virtex-HTM, Virtex-Il Pro " are trademarks of Xilinx, Inc.
Virtex-4 and Virtex-5' are trademarks of Xilinx, Inc.

WildStar' " is a trademark of Annapolis Micro Systems Inc.

XPP® is a registered trademark of the PACT XPP Technologies, AG.
XTensa® is a registered trademark of Tensilica, Inc.

CLAyTM is a trademark of National Semiconductors, Corp.

occam® is a registered trademarks of INMOS Limited.

To Teresa, Rodrigo, and Frederico
(Joao M. P. Cardoso)

To Mariana de Sena and Rafael Nuno
(Pedro C. Diniz)

Preface

The extreme flexibility of reconfigurable architectures and their performance poten-
tial have made them a vehicle of choice in a wide range of computing domains, from
rapid circuit prototyping to high-performance computing. The increasing availabil-
ity of transistors on a die has allowed the emergence of reconfigurable architectures
with a large number of computing resources and interconnection topologies. To ex-
ploit the potential of these reconfigurable architectures, programmers are forced to
map their applications, typically written in high-level imperative programming lan-
guages, such as C or MATLAB, to hardware-oriented languages such as VHDL
or Verilog. In this process, they must assume the role of hardware designers and
software programmers and navigate a maze of program transformations, mapping,
and synthesis steps to produce efficient reconfigurable computing implementations.
The richness and sophistication of any of these application mapping steps make the
mapping of computations to these architectures an increasingly daunting process.
It is thus widely believed that automatic compilation from high-level programming
languages is the key to the success of reconfigurable computing.

This book describes a wide range of code transformations and mapping tech-
niques for programs described in high-level programming languages, most no-
tably imperative languages, to reconfigurable architectures. While many of these
transformations and mapping techniques have been developed in the context of
compilation for traditional architectures and high-level synthesis, their application
to reconfigurable architectures poses a whole new set of challenges, in particu-
lar when targeting fine-grained reconfigurable architectures such as contemporary
Field-Programmable Gate-Arrays (FPGAs). Their ability to emulate virtually any
execution paradigm and to configure their logic blocks as either storage or comput-
ing resources forces compilers to evaluate a huge number of possible mapping al-
ternatives in search for effective hardware implementations on these reconfigurable
architectures.

This book is primarily intended for researchers and graduate students in the areas
of study of hardware compilation and advanced computing architectures in the fields
of Electrical and Computer Engineering and Computer Science. As it focuses on the
specific topic of compilation from high-level program descriptions to reconfigurable

vii

viii Preface

architectures, this book can easily support advanced compiler and computer archi-
tecture courses related to reconfigurable computing. Through this book, we hope
to motivate further discussions on the challenging topic of compilation for recon-
figurable architectures, and also hope this book can be a reference for researchers,
educators, and students to learn more about the most prominent efforts on this sub-
ject in recent years.

This book was only made possible with the unabated comprehension, relentless,
and unconditional support of our families who allowed us to devote to it countless
many hours, some of them late at night. It is to them we dedicate this book, in
particular to Teresa, Rodrigo, Frederico, Mariana, and Rafael. We are also truly
indebted to our parents, Cristina and Luis and Mariana and Mdrio, for their life-
long support and encouragement. Lastly, we would also like to thank our friends for
their support and friendship.

We would like to take this opportunity to acknowledge the support of the Springer
staff, Amy Brais (Springer Publishing Editor) for the opportunity to publish this
book, and Deborah Doherty (Springer Author Support) for her prompt help and
guidance throughout the editing and publishing process.

We would also like to acknowledge the financial support of the Portuguese
Foundation for Science and Technology (“Fundacdo para a Ciéncia e Tecnolo-
gia, FCT”) under the research grants PTDC/EEA-ELC/71556/2006, PTDC/EEA-
ELC/70272/2006, and PTDC/EIA/70271/2006.

We would like to acknowledge and thank the many contributions to a survey
about compilation techniques for reconfigurable computing platforms that inspired
this book by Markus Weinhardt (PACT XPP Technologies, AG., Germany). We are
also grateful to a number of colleagues who have carefully reviewed early drafts of
the chapters in this book, in particular, Leonel Sousa (INESC-ID/IST/UTL, Lisbon,
Portugal), José Alves (FEUP, Porto, Portugal), Koen Bertels (TU Delft, Delft, The
Netherlands), Horacio Neto (INESC-ID/IST/UTL, Lisbon, Portugal), Mihai Budiu
(Microsoft Research SVC, Montain View, CA, USA), Timothy Callahan (CMU, PA,
USA), Michael Hiibner (Univ. of Karlsruhe, Karlsruhe, Germany), Benjamin Gerde-
mann (INESC-ID/IST/UTL, Lisbon, Portugal), Ricardo Ferreira (Federal Univ. of
Vigosa, Brazil) and Jecel Assumpcao, Jr. (Univ. of Sdo Paulo, Sdo Carlos, Brazil).
Lastly, a very special thanks to Eduardo Marques (Univ. of Sao Paulo, Sao Carlos,
Brazil) for all his support while completing the final stages of this book during our
visit to the University of Sao Paulo in Sdo Carlos, Brazil. Lastly, we are grateful to
Markus Weinhardt for his contributions to a survey about compilation techniques
for reconfigurable computing platforms that inspired this book.

Lisbon, Portugal, Jodo M. P. Cardoso
April 2008 Pedro C. Diniz

Contents

1 Imtroduction............... il 1
1.1 The Promise of Reconfigurable Architectures and Systems 1
1.2 The Challenge: How to Program and Compile
for Reconfigurable Systems?, 3
1.3 This Book: Key Techniques when Compiling
to Reconfigurable Architecture, 4
1.4 Organization of thisBook 5
2 Overview of Reconfigurable Architectures 7
2.1 Evolution of Reconfigurable Architectures 7
2.2 Reconfigurable Architectures: Key Characteristics 8
2.3 Granularityo 10
2.3.1 Fine-Grained Reconfigurable Architectures 12
2.3.2 Coarse-Grained Reconfigurable Architectures 14
2.3.3 Hybrid Reconfigurable Architectures.................... 16
2.3.4 Granularity and Mapping.ccoviiiiiinenn... 19
2.4 Interconnection Topologiesc.cooiiiiiiiinennen... 20
2.5 System-Level Integration 21
2.6 Dynamic Reconfiguration. 24
2.7 Computational and Execution Models 29
2.8 Streaming Data Input and Output 31
2.9 SUMMATY ...t 31
3 Compilation and Synthesis Flows 33
31 OVerview ... 33
3.1.1 Front-End 34
312 Middle-Endot 35
313 Back-End.........o 37
3.2 Hardware Compilation and High-Level Synthesis................ 39
3.2.1 Generic High-Level Synthesis 40
3.2.2 Customized High-Level Synthesis for Fine-Grained
Reconfigurable Architectures 41

Contents

3.2.3 Register-Transfer-Level/Logic Synthesis................. 45
3.2.4 High-Level Compilation for Coarse-Grained
Reconfigurable Architectures 48
3.2.5 Placementand Routing 49
3.3 Mustrative Example i 51
3.3.1 High-Level Source Code Example 51
3.3.2 Data-Flow Representation 52
3.3.3 Computation-Oriented Mapping and Scheduling 53
3.3.4 Data-Oriented Mapping and Transformations............. 55
3.3.5 Translation to Hardware 58
3.4 Reconfigurable Computing Issues and Their Impact
on Compilation 59
3.4.1 Programming Languages and Execution Models 61
3.4.2 Intermediate Representations 62
3.4.3 Target Reconfigurable Architecture Features 64
3.5 SUMMArY ..ot 65
Code Transformations 67
4.1 Bit-Level Transformations iiiiiaaio.. 67
4.1.1 Bit-Width Narrowing 68
4.1.2 Bit-Level Optimizationsooeeieunn.... 72
4.1.3 Conversion from Floating- to Fixed-Point Representations .. 75
4.1.4 Nonstandard Floating-Point Formats 77
4.2 Instruction-Level Transformations Tl
4.2.1 Operator Strength Reduction. 78
422 HeightReduction 80
423 Code MOtionouuuiiit 84
4.3 Loop-Level Transformations iiiiiinio.. 87
43.1 LoopUnrollinguieiuniiiiniineiinennan. 87
4.3.2 Loop Tiling and Loop Strip-Mining 90
4.3.3 Loop Merging and Loop Distribution 94
4.4 Data-Oriented Transformations, 95
4.4.1 DataDistribution i i 95
442 DataReplication..............ooiiiiiiineiiinennna... 96
4.4.3 Data Reuse and Scalar Replacement in Registers
and Internal RAMS 96
4.4.4 Other Data-Oriented Transformations 99
4.5 Function-Oriented Transformations 101
4.5.1 Function Inlining and Outlining 101
4.5.2 Recursive Functions, 104
4.6 Which Code Transformations to Choose? 105
477 SUMMATY ..ottt ettt e e e e e e et et 107

Contents xi

5

Mapping and Execution Optimizations 109

5.1 Hardware Execution Techniques 109

5.1.1 Instruction-Level Parallelism 110

5.1.2 Speculative Executiont 112

5.1.3 Predication and if-conversion 114

5.14 Multi Tasking ... 116

5.2 Partitioning.ttt 118

5.2.1 Temporal Partitioningcoiiiiiiii.. 119

5.2.2 Spatial Partitioningoiiineiii i 124

5.2.3 Tustrative Example oo i 125

5.3 Mapping Program Constructs to Resources 127

5.3.1 Mapping Scalar Variables to Registers................... 127

5.3.2 Mapping of Operationsto FUs 129

5.3.3 Mapping of Selection Structures. 130

5.3.4 Sharing Functional Units FUs 131

5.3.5 Combining Instructions for RFUs....................... 132

54 Pipeliningt 134

5.4.1 Pipelined Functional and Execution Units................ 135

5.4.2 Pipelining Memory ACCESSESvveeeernnnneeennn.. 138

5.4.3 LoopPipeliningo i 139

544 Coarse-Grained Pipelining 144

5.4.5 Pipelining Configuration—-Computation Sequences 145

5.5 MEMOTrY ACCESSES . ..o ettt ee e ettt e e e 146
5.5.1 Partitioning and Mapping of Arrays

to Memory Resourcesc.ccoiiiiiiiiiiina... 146

5.5.2 Improving Memory ACCESSESvevrneerneennennnnnn 148

5.6 Back-End Support........ i 150

5.6.1 Allocation, Scheduling, and Binding 150

5.6.2 Module Generation.uuiiiiiiiiinneeean.. 151

5.6.3 Mapping, Placement, and Routing 153

5.7 SUMMATY ...ttt e e e 153

Compilers for Reconfigurable Architectures....................... 155

6.1 Early Compilation Efforts, 155

6.2 Compilers for FPGA-Based Systems 157

6.2.1 The SPCCompilercooiiiiiiiiiiinn... 157

6.2.2 A C to Fine-Grained Pipelining Compiler................ 158

6.2.3 The DeepC Silicon Compiler 158

6.24 The COBRA-ABSTOOlovviiiiiiiians 158

6.2.5 The DEFACTO Compilerooiiiiineenn... 159

6.2.6 The Streams-C Compiler.............................. 159

6.2.7 The Cameron Compiler, 160

6.2.8 The MATCH Compiler, 160

6.2.9 The Galadriel and Nenya Compilers 161

6.2.10 The Sea Cucumber Compiler 161

Xii Contents
6.2.11 The Abstract-Machines Compiler....................... 161
6.2.12 The CHAMPION Software Design Environment 162
6.2.13 The SPARCSTool, 163
6.2.14 The ROCCC Compiler.covviuneinnineenn... 163
6.2.15 The DWARV Compilerccooiiiiiioa... 163
6.3 Compilers for Coarse-Grained Reconfigurable Architectures 164
6.3.1 TheDIL Compilero, 164
6.3.2 The RaPiD-C Compilero, 165
6.3.3 The CoDe-X Compiler.oouiiiiniiineenn... 165
6.3.4 The XPP-VC Compiler, 166
6.3.5 The DRESC Compilercooiiiiiii... 166
6.4 Compilers for Hybrid Reconfigurable Architectures.............. 167
6.4.1 The Chimaera-C Compiler 167
6.4.2 The Garp and the Nimble C Compilers 168
6.4.3 The NAPA-C Compiler, 168
6.5 Compilation Efforts Summary 169
7 Perspectives on Programming Reconfigurable
Computing Platforms. L 177
7.1 How to Make Reconfigurable Computing a Reality? 177
7.1.1 Easy of Programming 178
7.1.2 Program Portability and Legacy Code Migration 179
7.1.3 Performance Portability, 180
7.2 Research Directions in Compilation
for Reconfigurable Architectures.ooivinnn .. 181
7.2.1 Programming Language Design 181
7.2.2 Intermediate Representation 181
7.2.3 Mapping to Multiple Computing Engines 182
7.24 Code Transformationsccouuiineeeen... 182
7.2.5 Design-Space Exploration and Compilation Time 183
7.2.6 Pipelined Execution i 184
7.2.7 Memory Mapping Optimizations 185
7.2.8 Application-Specific Compilers and Cores 185
7.2.9 Resource Virtualizationccoooiiiiiia... 186
7.2.10 Dynamic and Incremental Compilation 186
7.3 Tackling the Compilation Challenge for Reconfigurable
ATCRIteCTUIeS . ..ottt 187
7.4 Reconfigurable Architectures and Nanotechnology............... 189
7.5 SUMMATLY ..ottt ettt et e e et et 189
8 FinalRemarks....... 191
References i 193
Listof Acronyms 213

Chapter 1
Introduction

The increasing number of transistors on a chip [221,278] has enabled the emergence
of reconfigurable architectures and systems with a wide range of implementa-
tion flavors [145, 308]. While they were once confined to glue-logic applications,
given their very limited device capacities, reconfigurable architectures now cover a
wide range of application domains, including high-performance computing where
they deliver complete multicore solutions on a single chip [228, 270, 303]. The
diversity of reconfigurable architectures is astounding. At one end of the spec-
trum, reconfigurable architectures are composed of a very large number of fine-
grained configurable elements as is the case in Field-Programmable-Gate-Arrays
(FPGAS) [5, 14,54, 111]. In this case, one can build very specialized storage and
custom computing elements in response to specific domain requirements such as
input data rates or stringent real-time requirements. At the other end of the spec-
trum, many computing cores such as general-purpose processors (GPPs) can be
interconnected with other processors or memory via a customized reconfiguration
network [37,211,303]. In between these two extremes lies a range of architectural
options where multiple, and possibly heterogeneous, custom processing elements
and storage structures can be interconnected in an almost infinite set of possibili-
ties [145].

1.1 The Promise of Reconfigurable Architectures and Systems

Not surprisingly, the last decade has witnessed a growing interest in computing ar-
chitectures and systems with hardware elements that can be reconfigurable, possibly
even dynamically, on-the-fly and on demand. The configurability of the individual
computing and storage elements and their interconnectivity allows these architec-
tures to emulate a wide range of computing paradigms. For example, reconfigurable
architectures can be organized as a collection of independently executing processing
elements, thus as a parallel computer, or as a collection of cooperating and tightly
synchronized functional units (FUs) as in a pipelined architecture.

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 1
DOI 10.1007/978-0-387-09671-1_1,
© Springer Science+Business Media LLC 2009

2 1 Introduction

The extreme flexibility of reconfigurable architectures and their potential per-
formance, measured in a wide range of performance metrics, such as energy
consumption and execution time, have allowed them to become the vehicle of
choice in several computing domains, namely:

e Custom Computing Machines: The ability to be reconfigured as specific hard-
ware structures, such as highly parallel data-paths or supporting custom arith-
metic formats, makes reconfigurable architectures a prime vehicle for custom
computing machines. For example, a signal processing application might re-
quire only 12-bit fixed-point precision arithmetic and use custom rounding
modes [279] or make intensive use of a 14-bit butterfly routing network used for
parallel computation of a fast Fourier transform (FFT). In other domains, such
as robotics, cost, flexibility, and real-time capabilities might be critical require-
ments traditional architectures cannot meet. In many such domains and applica-
tion settings, reconfigurable architectures exhibit computing densities superior to
traditional computing architectures [88].

e Fast Prototyping and Emulation Systems: In addition, to their potential as
custom machines, their reconfigurability also makes them an ideal vehicle for
deployment scenarios where the computational needs cannot or are not fully de-
fined at design time. This is the case in early system prototyping where not all the
engineering requirements might be defined. Fabricating an Application-Specific
Integrated Circuit (ASIC) to detect a posteriori a manufacturing error or sim-
ply an engineering miscalculation might prove to be a costly design solution.
The field-programmability of reconfigurable architectures allows them to miti-
gate these issues as the recent increase in device capacity has enabled them to
emulate a wide range of ever increasing system functionalities. In other settings,
like communication protocols, where the parameters of operation might not be
well defined at deployment time, reconfigurable architectures may facilitate fu-
ture design upgrades that would have to be relegated to software-only solutions
in traditional systems [33].

e High-Performance Computing: Enabled by the large increase in fabrication de-
vice capacity, high-end reconfigurable architectures can also deliver impressive
performance by virtue of exploiting massive amounts of concurrency, as these
architectures can leverage parallelism at several levels (operation, basic block,
loop, function, etc.), and support multiple flows of control. In addition, high-end
reconfigurable architectures include multiple internal traditional cores (see, e.g.,
the Virtex-II Pro [340] and Virtex-5 [342] FPGAs with PowerPC [280] cores)
and large, customizable, internal storage components. Several applications areas
such as security (encryption) and image/signal processing have highlighted the
true potential of configurable architectures in the high-performance arena [83].

e Submicron and Nanoscale Computing Systems: An undesired effect of the
diminishing VLSI feature size in submicron fabrication processes is the in-
crease in transient and permanent hardware failures [277]. In some contexts, the
use of traditional fault-tolerant approaches might not be satisfactory and thus
design mapping and run-time techniques might be needed. In promising new
computing technologies, such as nanoscale computing systems [89,286], where

1.2 The Challenge: How to Program and Compile for Reconfigurable Systems? 3

failure/defect rates are non-negligible, reconfiguration is seen as a key technique
for dealing with defective resources [93] and transient faults [277].

This promise and potential of reconfigurable architectures was recognized very
early on by Gerald Estrin [104] and more recently by the academic research commu-
nity. During the past 10 years, a large number of reconfigurable computing systems
have been developed by the research community, achieving high performance for a
selected set of applications [145, 151]. Such systems combine, synergetically, mi-
croprocessors and reconfigurable hardware, thus exploiting the advantages of both
computing paradigms (e.g., [125]). Other researchers have developed reconfigurable
architectures based solely on commercially available FPGAs [96], in which the FP-
GAs act as processing nodes of a large multiprocessor machine possibly accommo-
dating on-chip softcore or hardcore processors. In yet another thrust, researchers
have developed dedicated reconfigurable architectures using as internal building
blocks multiple FUs such as adders and multipliers interconnected via program-
mable routing resources (e.g., [101,234]).

The tremendous increase of available transistors on a die coupled by the regu-
larity of many of the VLSI designs commercial reconfigurable architectures have,
as is the case of fine-grained devices, allowed these architectures to be propelled by
Moore’s Law [221] and poise themselves as versatile computing platforms capable
of challenging traditional architectures as mainstream computing engines.

1.2 The Challenge: How to Program and Compile
for Reconfigurable Systems?

Despite their enormous potential, reconfigurable architectures are extremely hard to
program. Currently, programmers must assume the role of software programmers
and hardware designers to effectively exploit the potential of the target reconfig-
urable devices. They will not only have to master two programming languages,
and bridge the semantic gap between them, but will also have to deal with all
the low-level details of mapping computations expressed in high-level program-
ming languages to these architectures. The lack of programming tools and effective
methodologies results in programmers engaging in long and error-prone mapping
processes, with the net result of not fully exploiting the capabilities of reconfig-
urable architectures.

It is thus widely believed that automatic compilation from established high-level
imperative programming languages, such as C or MATLAB, is a key approach to
the success of reconfigurable computing, as the design expertise required for devel-
oping applications to reconfigurable computing platforms is excessively complex
for the typical user (e.g., embedded systems programmer) to handle. For reconfig-
urable computing to become widely accepted, we believe that compilation times
for reconfigurable architectures should be comparable to those of current software
compilation, and, yet, generate solutions that are competitive, in terms of execution
time and hardware resources used, with hand-coded hardware solutions.

4 1 Introduction

A current challenge in this area is the establishment of efficient compilation ap-
proaches, which would help the programmer accomplish an efficient hardware im-
plementation without the need to be involved in complex and low-level hardware
programming. Although mature design tools exist for logic synthesis, for placement
and routing, and for multiunit spatial partitioning for programmable logic devices, !
there is a lack of robust integrated tools that take traditional sequential programs
and automatically map them to reconfigurable computing architectures. In addi-
tion, High-Level Synthesis (HLS)? tools have been mostly developed for ASICs
and neither wield the special characteristics of the reconfigurable architectures nor
desired high-level abstractions. These tools are commonly based on resource shar-
ing schemes [114] that target the layout flexibility of ASICs. They are, typically, less
efficient when considering the predefined logic cell architecture and limited routing
resources of fine-grained Reconfigurable Processing Units (RPUs), e.g., FPGAs,
where resource sharing is often inadequate. The inherent characteristics of the target
reconfigurable architectures require specialized (architecture-oriented) compilation
and synthesis approaches.

1.3 This Book: Key Techniques when Compiling
to Reconfigurable Architecture

This book presents a comprehensive description of the most significant work on
compilation for reconfigurable computing platforms. The widespread dissemination
of embedded systems and their increased integration level with reconfigurable de-
vices exacerbate the difficulties of current programming methodologies for these
systems and architectures.

A major goal of this book is to aid the reader bridge the gap between the software
compilation and the hardware synthesis domains as these subjects are seldom taught
jointly as part of Computer Engineering curricula in any advanced engineering de-
gree. This book is thus intended for computer professionals, graduate students, and
advanced undergraduates who need to understand the issues in both compilation and
synthesis domains. This book also relates the technical aspects of the most signif-
icant commercial efforts in the area of compilation for reconfigurable computing
with the techniques described here. This effort will, we hope, increase the under-
standing of these efforts and their techniques, ultimately increasing the acceptance
of reconfigurable architectures and more broadly of reconfigurable computing.

Naturally, the work presented in this book is derived from the research efforts
in the areas of compilation, parallelizing compilers, and hardware synthesis. With
the growing number of hardware resources in today’s VLSI chips, reconfigurable
architectures are effectively becoming parallel architectures with heterogeneous
and configurable internal topologies. Naturally, many of the compiler analyses and

! In this book we make no distinction between FPGAs and PLDs.

2 We make no distinction between the terms: high-level synthesis, architectural synthesis, and
behavioral synthesis.

1.4 Organization of this Book 5

mapping techniques described in Chaps.4 and 5, respectively, are derived from
the parallelizing compilation research community and molded to fit the increased
degrees of freedom reconfigurable architectures enable. Despite this morphosis as
parallel architectures, at their core, reconfigurable architectures are still hardware-
centric. The mapping of computations inevitably includes the fundamental steps
of spatial partitioning of computations among various reconfigurable devices in a
board, and/or its temporal partitioning when the computations require more hard-
ware resources than the physically available, respectively. Further, data must be
allocated and managed between the available memories (on- and/or off-chip mem-
ories) and between registers. Lastly, and because it is a very important execution
technique, the mapping can exploit pipelining execution schemes at either a fine-
or coarse-grain level. Many, if not the vast majority, of these techniques originated
from the hardware synthesis community and were given a new emphasis with the
increased device capacity and flexibility of these reconfigurable architectures.

The maturity of some of the compiler techniques for reconfigurable architectures
and the stability in the underlying reconfigurable technology have enabled the emer-
gence of commercial companies with their own technical compilation solutions to
help port, with some degree of effort, applications written in high-level program-
ming languages to reconfigurable devices. We include a chapter devoted to the most
prominent efforts highlighting the use of the techniques described here and their
technical solutions.

Complementary to this book, the reader can find survey-like literature focusing
on specific features of reconfigurable computing platforms and on software tools for
developing FPGA-based designs. Hartenstein [145] presents a summary of a decade
of research in reconfigurable computing, whereas Compton and Hauck [81] present
a survey on systems and software tools. Other authors present surveys that focus on
specific application domains or reconfigurable architectures [306,308,350].

In addition, other books have been published on reconfigurable computing [90] or
the use of reconfigurable hardware designs to solve specific problem domains [122].
This book complements these efforts in that, rather than describing specific appli-
cation or domain solutions, it provides a comprehensive description of the base
techniques programmers and designers expect to find in high-level compilation and
synthesis tools for these reconfigurable architectures. Understanding how a com-
piler views its design space will ultimately allow programmers and designers to
better understand and thus become more productive users of the tools.

1.4 Organization of this Book

This book is organized into eight chapters with distinct perspectives. In Chap. 2,
we provide a brief description of current architectures for reconfigurable comput-
ing platforms with the goal of giving the readers a good perspective of the wide
diversity of reconfigurable architectures and their preferential execution model. In
Chap. 3, we present an overview of generic compilation and synthesis flows for

6 1 Introduction

reconfigurable architectures. In this chapter, we focus on the aspects of the com-
pilation and synthesis process that are exacerbated by the reconfigurability of the
target architectures, but also address the important and often neglected aspects of
the input programming paradigm. In Chap.4, we describe in detail a wide range
of code transformations enabled or emphasized by the nature of the reconfigurable
target architecture at hand. This chapter includes many illustrative examples using
an imperative source programming language, so that the reader can understand the
underlying transformation of the code either as the source- or intermediate-level
representation. In Chap. 5, we describe mapping techniques for reconfigurable ar-
chitectures with a special emphasis on temporal and spatial partitioning of the com-
putation and the corresponding mapping of data to various storage structures. In
Chap. 6, we present a selected sample of existing compilers and tools for map-
ping high-level languages to reconfigurable architectures. In Chap.7, we present
our overall perspective on reconfigurable computing, highlighting what we believe
are key issues that need to be addressed to make this promising technology a reality.
In this chapter, we also describe a set of possible research directions in this area and
provide a vision for a future compilation and synthesis flow that aims at mitigating
some of the hard compilation problems reconfigurable architectures raise. Finally,
in Chap. 8, we conclude with our overall remarks on the state and possible evolution
of compilers for reconfigurable computing systems.

Chapter 2
Overview of Reconfigurable Architectures

In this chapter, we describe the main features of reconfigurable architectures and
systems, focusing on reconfigurable fabrics, the underlying vehicle for reconfig-
urable computing. We begin with a short historical perspective followed by a de-
scription and categorization of reconfigurable architectural features, such as their
granularity, interconnection topologies, and system-level integration. We describe
dynamic reconfigurable features some architectures exhibit as well as the execution
models these architectures preferentially expose. Throughout this chapter we illus-
trate specific architectural features using representative examples of commercial and
academic reconfigurable architectures, but without aiming to survey all the efforts
on reconfigurable computing architectures.

As this book mainly focuses on compilation techniques for computations ex-
pressed in high-level programming languages when targeting reconfigurable archi-
tectures, we do not extensively describe system-level issues such as overall system
organization or integration. Similarly, we have omitted detailed descriptions of ar-
chitectural approaches that rely on the reconfigurable fabric as building blocks of
complex systems. Examples of these blocks are configurable processors and syn-
thesizable IP-cores with parameterized features, e.g., related to register windows,
pipeline stages, or instruction-set customizations. We see these architectural defin-
ition efforts as the application of domain-specific mapping approaches, of limited
scope, but complementary to the general techniques described in Chaps. 4 and 5.

2.1 Evolution of Reconfigurable Architectures

Reconfigurable architectures might have had their origin in the seminal work of
Gerald Estrin et al. [104-106] with the development of the concept of restruc-
turable computers. This work was the focus of attention in the 1970s by Miller
and Cocker [215] and later by Reddi and Feustel [259]. Despite the interesting po-
tential performance advantages over traditional computers, the concept of reestruc-
turable computers was never integrated in general-purpose computing systems at

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 7
DOI 10.1007/978-0-387-09671-1_2,
© Springer Science+Business Media LLC 2009

8 2 Reconfigurable Architectures

that time, due mainly to the high costs and the inexistent appropriate technology
to build those machines. More constraint-driven architectures based on the von-
Neumann paradigm (RISC and CISC) were the preferable engines for mainstream
computing [154].

The work by Altera Corp. and Actel Corp. in programmable logic devices [14]
and in reconfigurable interconnections [5] and the work in the early 1980s, by
Freeman from Xilinx Inc., in the definition of the configurable logic array [111] have
contributed to the birth of a new breed of reconfigurable architectures named Field-
Programmable Gate-Arrays (FPGAs). Given their limited device capacity, early
FPGAs were thus limited to fast-prototyping and glue-logic functions in products
that did not justify ASIC solutions. Recent technological advances and the regularity
of FPGAs have allowed them to evolve to very powerful reconfigurable devices [83]
with the potential to implement almost any circuit from simple hardware designs to
entire multicore systems [228]. FPGAs are now seen as a technology able to imple-
ment entire systems, some including hardwired traditional microprocessors (e.g.,
Virtex-II Pro from Xilinx [340]).

The extraordinary growth in FPGA capacity has enabled researchers in academia
to experiment and validate novel computing paradigms. In the late 1980s researchers
developed several prototype architectures based on FPGAs (see, e.g., [135,331])
which, among other efforts, can be considered the main roots of reconfigurable com-
puting. Reflecting the growing interest in reconfigurable computing in academia and
industry, the 1990s saw the birth of numerous academic forums for discussion of re-
configurable computing related research. Academic forums such as the International
Conference on Field-Programmable Logic and Applications (FPL), the IEEE Sym-
posium for Field-Programmable Custom Computing Machines (FCCM), and the
ACM International Symposium on Field-Programmable Gate Arrays (FPGA) are
today well-established venues for the presentation and dissemination of academic
and industry related findings and experiences in reconfigurable computing.

2.2 Reconfigurable Architectures: Key Characteristics

In this description we distinguish between reconfigurable architectures, as the
fundamental architectural hardware elements, and reconfigurable processing units
(RPUs) as reconfigurable architectures with associated execution control and opera-
tions. While reconfigurable architectures present the basic hardware elements, RPUs
organize these configurable elements exposing to the software layer an abstraction
level that ranges from the very low-level bit-oriented instructions to higher-level in-
structions. The abstraction and capabilities of RPUs critically depend on the granu-
larity and interconnection of the underlying reconfigurable fabric resources, namely:

e Functional Units (FUs) — each one programmed to select a finite number of be-
haviors. The complexity of those behaviors can range from an ALU (Arithmetic
Logic Unit) operation to a simple boolean function, depending on the granularity
of the reconfigurable device.

2.2 Reconfigurable Architectures: Key Characteristics 9

e Memory Elements (MEMs) — each one with finite size capacity that can usu-
ally be customized to implement application storage requirements. For example,
internal memory banks can be used for partitioning of data and registers can be
organized to form tapped-delay lines.

e Interconnection Resources (IRs) — consisting of channels, programmable con-
nection switches, and programmable routing switches or buses. These resources
are programmed to connect resources in the device, for instance to define specific
FU to Memory topologies, or inter-FU communication topologies (e.g., linear or
two-dimensional torus).

e Control Units (CUs) — can range from custom, very specific, finite-state machines
(FSMs), typically seen in fine-grained reconfigurable architectures to micropro-
grammed VLIW (Very Long Instruction Word) based architecture controllers
commonly found in coarse-grained architectures. Depending on the architecture,
these CUs may offer some degree of customization or may consist of fixed re-
sources, e.g., controlling the execution of the FU, not exposed to the programmer.

e Input/Output Buffers (IOBs) — used to interface devices and/or units and can be
configured to meet specific timing/bandwidth requirements.

Of these elements, the very fine-grained FUs present in contemporary FPGAs
offer a unique aspect seldom found in other reconfigurable architectures. With its
configurable logic blocks, it is possible to interchange part of the available re-
sources between functional and storage elements. This unique capability makes
these reconfigurable devices even more challenging to program as tools must gage
the cost/benefits of using the configurable resources either for computation or for
storage.

Another important aspect of reconfigurable architectures deals with its syn-
chronicity. Although there have been various research efforts regarding asynchro-
nous reconfigurable computing architectures (e.g., [304]), the vast majority of
reconfigurable architectures are synchronous. Most fine-grained reconfigurable ar-
chitectures, such as FPGAs, and in spite of their intrinsic maximum clock frequen-
cies, operate at frequencies dependent on each configuration, dictated by the critical
path delay of the hardware structures. The operating frequency is dictated not only
by the characteristics of the design but also by the ability of the mapping tools to
place and route (P&R) the designs, so that the maximum delay between sequential
elements (e.g., registers and memories) is as short as possible. Conversely, coarse-
grained reconfigurable architectures usually have a fixed frequency clocking scheme
synchronizing the transfer of data between the elements. This strategy limits flexi-
bility, but renders easier programmability, performance estimation models, and pre-
dictability.

In addition to the many possible configurations of the architectural elements in
specific topologies, RPUs offer an almost infinite number of higher level program-
ming abstractions and execution schemes. At one end of the spectrum of possi-
bilities, RPUs can be organized internally as VLIW architectures [110] offering a
VLIW programming ISA. In common VLIW architectures there exist a number of
programmable FUs, without direct interconnections between them. The flow of data
between FUs is accomplished through register files. In these VLIW architectures no

10 2 Reconfigurable Architectures

| IOB| | IOB| | IOB| | IOB| | |OB| | IOB|
10B MEM FU FU FU FU MEM 10B
10B MEM FU FU FU FU MEM I0B
I10B MEM FU FU FU FU MEM 10B
10B MEM FU FU FU FU MEM 10B
| IOB| | IOB| | IOB| | IOB| | IOB| |IOB |

Fig. 2.1 Possible two-dimensional structure for a reconfigurable architecture

traditional placement and routing a complex step is needed. In this case, the place-
ment can be seen as a sequential assignment of the instructions to the FUs. A routing
step is not present as there is usually no need to establish the routing paths using the
interconnection resources as in the case of common reconfigurable fabrics. On the
opposite end of the spectrum, the various FUs can have a localized controller ca-
pable of interpreting specific instruction streams behaving as Network-on-a-Chip
(NoC) architectures [37,211], where elements communicate via data packets using
dynamic or static routing schemes.

We now describe different reconfigurable computing architectures according to
their granularity. We begin by describing fine-grained reconfigurable fabrics repre-
sented by FPGAs and then focus on academic research and industry efforts consid-
ering coarse-grained and hybrid reconfigurable architectures.

2.3 Granularity

Granularity is one of the key aspects that differentiate reconfigurable architectures
as it indirectly dictates the level of effort required to map computations or other
high-level abstractions to the underlying reconfigurable fabric. We summarize in
Table 2.1 various reconfigurable architectures, their typical organization, and the
atomic granularity of their hardware resources.

According to the granularity of their cells (e.g., processing elements (PEs)), we
classify reconfigurable architectures in three broad categories, namely:

e Fine-Grained: The configurable cells of these RPUs, often referred to as “sea-
of-gates,” include logic gates thus allowing the implementation of arbitrary and
specialized data-path hardware designs.

2.3 Granularity 11

Table 2.1 Examples of architectures with different granularities (Virtex [343], Stratix [15] DPGA [87],
Garp [60], PipeRench [132], rDPA [149], MATRIX [217],XPP [31], MorphoSys [282], ADRES [208], ARRIX
FPOAs [203], RAW [303])

Cell . Canoqical Examples of devices Shape Cell type Bit-width
granularity Operations
CLB, LUTs, multiplexer, 2-5
FPGAs, Xilinx Virtex and 2D arra register 1
Logic Altera Stratix Y MULT, DSP blocks 18
Fine (wire) | functions RAM Blocks Customizable
of 2-5 bits DPGA 2D array LUT 4
Garp (reconfigurable logic 2D array CLB 2
array)
2-32
. trizabl
PipeRench 2D array ALU + Pass Register File (parabn;?;eza ¢
fabrication)
32
rDPA/KressArray (Xputer) | 2D array ALU + register (@ arabr:?;:;zable
fabrication)
Coarse ALU MATRIX 2D array ALU with multiplier + memory 8
operations of T :
(operand) 4-32 bits RaPiD 1D array ALU, multipliers, registers, 16
RAM
4-32
XPP 2D array ALU with multiplier, RAM (parametrizable
before
fabrication)
MorphoSys 2D array ALU + multiplier + register file 28
ADRES 2D array | ALU + multiplier + register file 32
ARRIX FPOAs 2D array ALU + MAC + register file 16
Sequence of 2D array .
Mix-coarse | assembly RAW RISC + memory + switch 32
. X network
instructions

e Coarse-Grained: The configurable cells of these RPUs, often designated as Field-
Programmable ALU Arrays (FPAAs), include ALUs, multiplier blocks, and dis-
tributed memories.

o Mix-Coarse-Grained: The configurable cells of these RPUs include microproces-
sor cores combined with very fine-grained reconfigurable logic.

There are cases of architectures that crosscut different granularity categories.
For instance, the PipeRench [131, 132] (see Table 2.1) can be classified either as
a fine- or as a coarse-grained architecture. In PipeRench, the parameterized bit-
width of each PE can be set before fabrication ranging from a few bits to a larger
number of bits [132], as is typical in coarse-grained architectures. Another exam-
ple of a coarse-grained architecture with variable bit-width is the XPP [31] (see
Table 2.1).

Some approaches use a layer of abstraction implemented by architectural tem-
plates as is the case of the dynamic processor cores in fine-grained RPUs, such as
the DISC (Dynamic Instruction Set Computer) [327]. A differentiating aspect of the
DISC approach is that it allows the dynamic reconfiguration of dedicated hardware
units, when presented with a new instruction corresponding to a unit that has not yet
been configured.

In the next sections, we discuss in more detail fine- and coarse-grained reconfig-
urable architectures.

12 2 Reconfigurable Architectures

2.3.1 Fine-Grained Reconfigurable Architectures

Fine-grained reconfigurable architectures, such as FPGAs, can be viewed as recon-
figurable hardware devices consisting of fine-grained FUs interconnected by an ar-
bitrary programmable network. These fine-grained, programmable FUs are able to
implement low-level bit-oriented logic functions for a specific number of inputs and
outputs. For example, a simple fine-grained reconfigurable FU can be implemented
as a Look-Up Table (LUT) with two inputs and one output as depicted in Fig.2.2.
In this example, the logic function implemented by the two-input LUT is selected
by the addressing value of the tuple (x1, x2) which selects one of the four table bits
(bit0 through bit 3) as its output. The loaded configuration of the table bits thus
defines the specific logic function of the two inputs x1 and x2.! The FU illustrated
allows the connection to y1 of either a nonregistered or a registered output of the
LUT by controlling the output multiplexer via the s1 signal.

Contemporary FPGAs use FUs more complex than the one in the example given
above. In Xilinx FPGAs the FUs are called Configurable Logic Blocks (CLBs) and
consist of a number of Slices, typically two, where each Slice includes two LUTs.
Typical input/output lines for each LUT are 4 and 1, respectively. Besides the LUTs,
each CLB also includes multiplexers and flip-flops (FFs). Existing high-end FPGAs
include specific FUs such as multipliers, digital signal processing (DSP) blocks, and
distributed memory blocks [342]. Common CLBs can still be used to implement
storage elements such as small RAMs, FIFOs, and shift registers [175].

The logic functions implemented by each CLB are programmed by modifying
the table of bits for each LUT and the multiplexer’s selection lines. One possible

2-input LUT
x1
bit0
X
)
=
bit1 Fx1, x2) 5
) D Q =
=
bit2 I
x
)
=
bit3
s1
x2
clk |

Fig. 2.2 Example of a simple FU with a 2-input LUT

! Using this LUT-based approach an LUT with # inputs is able to implement 22" different logic
functions.

2.3 Granularity 13

(a) (b) (c)

Fig. 2.3 Elements used for establishing routing channels between architectural components: (a)
programmable connection switch; (b) programmable routing switch; (¢) SRAM-based program-
mable connections between wires

approach for device programmability consists of using SRAM-based configuration
cells [294], containing not only the contents of each LUT table, but also the config-
uration of the interconnections between resources. Interconnecting CLBs allows the
architecture to implement arbitrary complex logic functions.

The way FUs (e.g., CLBs) are distributed and interconnected in the architecture
defines the topology of the reconfigurable architecture. Common FPGAs use an
island-style topology consisting of tiles where each tile includes an FPGA compo-
nent (e.g., FU, memory block). Wire segments and programmable routing switches
are used to establish the connections between reconfigurable components as illus-
trated in Fig. 2.3. These routing resources can be organized into two main schemes
often present in the same architecture. A flat single level of interconnection is used
to promote fast localized connectivity, whereas a hierarchical, device-wide, inter-
connection scheme is used for long range connectivity.>

Despite their extreme flexibility, fine-grained reconfigurable architectures, such
as FPGAs, do exhibit some disadvantages. Their fine granularity and large number
of programmable points impose large configurations (bit-streams) and thus long re-
configuration times. Large number of hardware synergies for reconfigurability pur-
poses is also problematic in terms of power dissipation given the increasing leakage
current effects of leading edge manufacturing processes.

Programming these architectures is also a challenge as they require the use of
hardware-oriented programming languages, such as VHDL [162] and Verilog [163],
to bridge the gap between the very low-level bit-oriented reconfigurable devices
and the high-level programming structures. Despite the ability of these languages
to raise the level of abstraction to structural or even behavioral constructs, the ab-
stractions they expose to the programmer are still fairly low level. The increase in
device capacity only exacerbates this issue, as programmers seek to map increas-
ingly complex computations to even larger devices. Many research efforts in acad-
emia and industry have sought to ameliorate this issue as described in Chap. 6, by
offering higher-level programming abstractions and/or offering an automatic com-
pilation and synthesis path from popular high-level programming languages such as
C or MATLAB.

2 The choice of the interconnection strategy has profound implications on placement and routing
approaches.

14 2 Reconfigurable Architectures

2.3.2 Coarse-Grained Reconfigurable Architectures

We now describe some of the most representative efforts in reconfigurable architec-
tures that exhibit coarse reconfigurable granularity elements.>

The Xputer architecture [146, 149] was one of the first coarse-grained recon-
figurable architectures. The Xputer consists of a reconfigurable Data-Path Array
(rDPA) organized as a uniform two-dimensional array of ALUs (32-bit width in
the KressArray-1 version). The ALUs are mesh-connected via three levels of inter-
connection, namely: (1) nearest neighbors; (2) row/column back-buses; and (3) one
global bus. The ALUs can also be used as routing resources. An address generation
unit is responsible to control the flow of data to and from the rDPA. Each Xputer is
connected to the host I/O bus and to its rDPA, as depicted in Fig. 2.4. The Xputer is
programmed using CoDe-X [34], a co-compiler that maps the suitable portions of a
C program to the rDPAs and the remainder of the program to the host system.

N A 3 External Bus to Host and Main Memory
A
| buffer | | status | rDPA
Address
[3 Generation
Unit rDPA
Control Unit
[22]
g Y
< [4 »| Register File
o
Q

Fig. 2.4 The rDPA architecture (based on [148])

3 For a more exhaustive coverage of this topic the interested reader is referred to the survey by
Hartenstein [145].

2.3 Granularity 15

Input Output

Streams Streams
Custom

Memor . Memo
y Multiplier Function Multiplier v

A —]
N L
U -

cr >

Fig. 2.5 A generic RaPiD architecture (based on [101])

The RaPiD [101], depicted in Fig.2.5, is another coarse-grained reconfigurable
architecture composed of multiple functional units such as ALUs, multipliers,
registers, and RAM blocks organized linearly over a programmable segmented bus
structure, and communicating through registers in a pipeline fashion. There are no
cache memories as data is streamed in and out directly from external memory, or in-
put/output devices, respectively. The architecture includes programmed controllers
that generate an instruction stream, which is decoded as it flows through the data-
path. Rather than having a global register file, data and intermediate results are
stored locally in registers and small RAMs, close to their destination FUs. RaPiD is
also a dynamically reconfigurable architecture as it allows data to be redirected or
bypass selected elements in a programmable and data-dependent fashion, i.e., the
routing of data can reflect the outcome of an operation. To facilitate the mapping
of applications, an imperative C-like programming language was developed, which
exposes to the programmer the pipelining of the architecture [84].

A radically distinct coarse- or mixed-grained reconfigurable architecture is the
PipeRench [132], illustrated in Fig. 2.6. PipeRench is naturally geared for streaming
and pipelining of computations with virtually unlimited number of pipeline stages
implemented as hardware stripes. Each hardware stripe has an array of PEs exclu-
sively connected to the previous and to the next stripes. Each PE consists of an
ALU and a pass register file allowing the data to bypass the ALUs of a specific
stripe. As it does not have explicit support for iterative constructs such as loops,
PipeRench requires the compiler to fully unroll loops and to schedule the flow of
data between stripes and memory. Programmers use the compiler to map their ap-
plications, written in DIL [55], by splitting their computations in stripes (possibly
using more stripes than the physically available). The compiler generates a schedule
of the virtual stripes and relies on hardware support for swapping in and out, on
demand, the configuration for each stripe.

16 2 Reconfigurable Architectures

Global Buses P pass Registers
Qutpul from
Gobal buses Pass Registers v previous stiipe i
"l PE, EI "l PE, EI "l PE, EI "l PE; EI (Interconnection Network)
(_— Im*srcolnecﬁon* : —) L B-1bits
fom
! P b ! it — e
-—| PEy E' -| PE; E' -| PE, E' -—| PE, E' tonext
(— Irﬂ*ercolnecﬁon* : _—) \%‘}g &"%/
I 1 I 1 I 1 1 Conlrel! X ¥ Control/
’|Pf“'$| ’|pf"$| ’|Pf"$| ‘| Pf°'%| ;?ﬁr; amy bits | Arithmetic Logic | _cary bits
(Interconneftion) Uruto(:LU) —_
P P B, oudtba

v
To interconnection network

(a) (b)

Fig. 2.6 The PipeRench architecture (based on [132]): (a) a stripe consists of PEs and intercon-
nections; (b) PE structure

Another coarse-grained architecture is the Architecture for Dynamically Recon-
figurable Embedded Systems (ADRES) [208]. ADRES is composed of two major
components, a VLIW engine and a reconfigurable array, able to communicate via
direct interconnection resources as depicted in Fig.2.7. The reconfigurable array
consists of a two-dimensional array of coarse-grained 32-bit PEs, each of which is
composed internally of an FU and a local Register File (RF). The reconfigurable ar-
ray is responsible for exploiting parallelism in highly pipelined kernels (e.g., loops)
while the VLIW engine is responsible for exploiting ILP on nonkernel parts of the
application. In this architecture, FUs support predicated execution and along with
normal operands, the predicate signals are also routed between FUs. The authors
have developed a C compiler for ADRES architecture templates [206]. The com-
piler maps to the two-dimensional array structures kernel computations identified
through execution profiling techniques [207].

2.3.3 Hybrid Reconfigurable Architectures

We define hybrid reconfigurable architectures as architectures where the reconfig-
urable computing component resides with a host microprocessor on the same chip
using either fine- or coarse-grained RPUs. Examples of hybrid reconfigurable archi-
tectures range from an architecture configuration arrangement where a microproces-
sor is connected to a fine-grained reconfigurable logic (Garp [60] and SCORE [72])
or a coarse-grained array (MorphoSys [282] and ADRES [208]) to an architecture
configuration arrangement such as RAW [303] where an array of RISC-based cells

2.3 Granularity

-

Instruction fetch

Instructpn dispatch
Instruction decode
¥ ¥

Register File (RF) \

|
R N S N TS 0 R S

lFUl—»lFU]—»lFU]——{FU]-»[FUI-»[FU]-»[FU]»[FU]
.
N — —]
I i AT O I T B N X X
FU [« FU | FU JfRS] FU R U LB FU et FU | A FU
RF RF RF RF RF RF RF RF
N AN 4) ([I N W 7T
s =g c1N iy s =cs e
FU |effs] FU |effs] FU |t FU effs] FU |effsl FU Me] FU <M FU
RF RF RF RF F RF RF RF
([I N W) ([I N W 7T
f v & | :l“W f ﬁg’x 3”#
FU | L,| F L. Fru | Lo Fru | L] F L,| FU L,| FU L, Fu
F |«—» RF |«—» RF '«—» RF '«—» RF |«—» RF |[«—» RF |[«—» RF

(C))]

t
[1]
!
[1]
t
[1]
t
iy

T
w
s

t
)
t
)
t
i

sl
m
)
m
m
| M
hl
sl
hl
sl
m
|
m

S S S S
f — f —]
] :vLW :l”ﬂ
T T T T T T | T |
r FU | FU | FU |l FU DY\ FU P\ FU L] FU P FU
RF RF RF RF R RF RF F

il
[
il
[
s
t'T,“
[
l
[

FU |afi] FU il FU [atfs] FU |etS] FU Hel Fu Hol FU et FU
RF RF RF RF RF RF RF RF
| | H l_/_ | |
F/"\—/ ": %('y H
FU FU FU FU FU FU FU FU
Ll L L] L L Ll Ll Ll
RF («—»| RF l«—» RF f«—» RF |«—» RF |«—»| RF [«—»| RF |«—»| RF
- J
From different sources
MUX MUX /" ™\ _MUX
) | l
o { {
% pred srcl src2
(b) ° ; ; Register
Functional Unit (FU ’
FU) File (RF)
pred_dst1 pred_dst2 dst1

t
oo —
Dreflbfjglbrigl

To different destinations

Fig. 2.7 The ADRES architecture (based on [208]): (a) typical architecture template; (b) its PE

18 2 Reconfigurable Architectures

each of which possibly containing some amount of dedicated configurable logic.*
Companies such as Triscend [312], Chameleon [267], and Altera [13]° have com-
mercialized devices integrating one or more hard-wired microprocessors with re-
configurable logic. From the major FPGA vendors, only Xilinx [338] currently
includes in its family of devices FPGAs [340] with one or more hardcore Pow-
erPC processors [344]. We now present illustrative examples of architectures in
this class.

The Garp architecture [60] integrates a MIPS core with an RPU used as a
coprocessor accelerator. The RPU uses a fixed clocking scheme and consists of a
fine-grained two-dimensional reconfigurable array of CLBs interconnected by pro-
grammable wiring. Each array row has a section dedicated to memory interfacing
and control. The array has direct access to memory for fetching either data or con-
figuration data, hence avoiding both data and reconfiguration bottlenecks. An ANSI
C compiler has been developed for the Garp architecture [60] that uses the hyper-
block [256] intermediate representation to extract loop kernels suitable to be mapped
to the Garp array [61].

The MorphoSys architecture [282] also integrates an RISC processor core with
an RPU and a memory interface unit. The RPU consists of an 8-by-8 reconfigurable
array of coarse-grained cells, each internally composed of an ALU, using 28-bit
fixed-point precision arithmetic and capable of 1 of 25 functions, a multiplier (16 X
12 bits), and a register file (composed of 4 16-bit registers). Before mapping a C
program to Morphosys, suitable functions for the reconfigurable array are manually
identified by the user. Then, those functions are mapped and programmed on the
reconfigurable array using the MorphoSys assembly language [281].

The SCORE (Stream Computations Organized for Reconfigurable Execution)
system [72] connects a microprocessor to distributed memory modules with at-
tached reconfigurable logic based on four-input LUT elements. SCORE supports
a stream-oriented computational model where the computation is split in compute
pages managed by a run-time operating system [201]. An architecture-specific lan-
guage, TDF (Task Description Format) [92], was developed, as well as a tool to
translate TDF programs to RTL Verilog code, mapped to reconfigurable resources
using specific back-end tools.

Lastly, the RAW Machine [303] is a coarse-grained two-dimensional tiled ar-
chitecture. Each tile consists of an §-stage pipelined 32-bit RISC processor with a
pipelined floating-point unit, 32KB of instruction cache and 32KB of data cache
memory, as well as programmable communication channels and routers for a static
and a dynamic network. The authors use a parallelizing C compiler that partitions
the computation and data among the tiles and programs the communication channels
to best suit the communication patterns for each application [189].

4 Early versions of RAW considered a reconfigurable logic unit connected to each RISC processor.

5 Altera has discontinued the Excalibur FPGA devices, which integrated an on-chip hardcore ARM
processor.

2.3 Granularity 19

2.3.4 Granularity and Mapping

In commercially available fine-grained FPGAs, as is the case of the Xilinx family
of Virtex devices (e.g., [343]), reconfigurable elements or CLBs consist of flip-flops
and function generators that implement boolean functions of up to a specific num-
ber of variables. By interconnecting many CLBs, a designer can implement vir-
tually any digital circuit with combinatorial and sequential behavior. Given their
fine-granularity, the burden of compilation is placed on the synthesis, mapping, and
placement and routing (P&R) aspects of the design. The P&R steps are notori-
ously difficult to predict or estimate, making the interaction between these steps
and high-level compilation problematic. Their extreme flexibility, however, cou-
pled with the tremendous increase of device capacity, has made FPGAs a very
popular reconfigurable fabric in various domains, turning them into a commercial
success.”

Coarse-grained reconfigurable architectures use ALUs as the basic reconfig-
urable hardware blocks [146]. This approach may provide more efficient silicon
solutions, but limits the flexibility. Each reconfigurable block, an ALU, has a more
compact silicon implementation than the equivalent ALU in a fine-grained recon-
figurable architecture. However, it has a more rigid structure with respect to its
control and possible interconnection network. The placement and routing efforts
are alleviated, as the burden of translation is placed on the mapping of high-level
instructions to the individual ALU instructions and the data routing between the
various units.

To attempt to bridge the gap between fine-grained and coarse-grained architec-
tures, and taking advantage of their tremendous increase in capacity, some of the
newer FPGA architectures (e.g., Virtex-1I [343] and Stratix [15]) include distributed
multiplier and memory blocks. These architectures thus retain the fine-grained fla-
vor of their fabric while supporting other, coarser-grained, classes of architectures
commonly used for data-intensive computations.

An alternative approach to offer a coarse-grained abstract architecture, given the
underlying fine-grained fabric, is to provide a mapping tool or to rely on the design
of an operand-level library of macros, also known as soft-macros. These macros,
possibly preplaced and/or relatively placed (e.g., as with Xilinx’s Relatively Placed
Macros or RPMs), provide a mapping of higher-level operators such as adders of
parameterized bit-widths, to each target FPGA’s specific configurable logic blocks.
Libraries of such macros include multiple implementations considering different
design trade-off points (e.g., area, latency, and configuration time). This soft-macro
practice improves the compilation time and leads to more accurate time and area
estimates.

Yet another alternative for the development of an abstraction layer in reconfig-
urable architectures is the use of hardware templates with specific architectures,
possibly with parameterized and/or programmable features. An extreme application

6 Despite their widespread use and commercial success, FPGAs have shown inefficiency in time
and area for certain classes of problems [144, 145].

20 2 Reconfigurable Architectures

of this concept are the configurable and the softcore processors implemented as soft-
macros on FPGAs. Given the capacity of contemporary FPGA devices, it is possible
to replicate multiple cores, with distinct combinations of configuration parameters,
with reconfigurable interconnections on the very same FPGA hardware configura-
tion [333].

2.4 Interconnection Topologies

As silicon-based fabrication processes are natural planar, arrangements of devices,
one-dimensional and two-dimensional array topologies for interconnecting FUs, on-
chip memories, and I/O buffers, are the dominant organization in reconfigurable
architectures.

In one-dimensional array architectures, a possible interconnection topology is
a simple ring with wrap-around connections. While this linear topology follows
the natural arrangement of the array, it exhibits a long worst-case delay/latency be-
tween end points of the array. A variant of this approach includes a secondary ring
dedicated to communication in opposite directions. An alternative interconnection
topology is a shared bus which avoids the potential issue of half-way latency at
the expense of possible contention. An arrangement that potentially solves the is-
sues of latency and contention is the all-to-all crossbar interconnection topology.
Not surprisingly, the crossbar is only feasible for a small number of array ele-
ments. For larger number of elements, sparse topologies are often used (e.g., as
in RaPiD [101]).

Regarding two-dimensional arrays, island-style architectures are the most com-
mon organizations as they allow routing and computing resources to intermingle
without exacerbating possible bisection bandwidth issues. Usually, each basic tile
consists of an FU and/or memory block connected to vertical and horizontal wire
segments. This is the basis for the most common FPGA topologies which can be
augmented by interconnection resources based on different length segments, in or-
der to more efficiently connect non-neighboring tiles. Other two-dimensional array
architectures using easily scalable topologies consist of mesh, octal, and hexagonal
arrays. In these topologies, FUs have local and direct connections to their neighbors
as depicted in Fig.2.8a. To augment the routing possibilities of these topologies,
some architectures use dedicated connections from each FU to other nonlocal FUs,
or buses as depicted in Fig. 2.8c. To directly connect FUs or other components lo-
cated at the boundaries of the two-dimensional arrays, torus-based topologies are
used (see, e.g., [147]), as illustrated in Fig. 2.8d.

Other topologies used in the context of multiprocessors such as hypergraphs,
trees, and hierarchical combinations of these are seldom applied in reconfigurable
architectures [157].

2.5 System-Level Integration 21

»
L4
»
14
»
14
»
L4

T
YEaEE
S
SuSitog
e

v

v

v

4
N
4
N
4
N
4
N
v

(c) (d)

Fig. 2.8 Different interconnection topologies: (a) mesh; (b) mesh with 1-hop connections;
(¢) mesh with buses; (d) torus

2.5 System-Level Integration

Reconfigurable computing systems are typically organized as RPUs coupled to
a host system consisting of a general-purpose processor (GPP), as illustrated in
Fig.2.9. The type of interconnection between the RPUs and the host system as well
as the specific characteristics of the RPUs lead to a wide variety of possible recon-
figurable architectures. While some architectures naturally facilitate some aspects
of mapping of computations, no single dominant design solution has emerged for
all application domains.

The type of coupling between the RPUs and the host system has a significant
impact on the communication cost between the RPU and its external system. We
classify this coupling into three main types, as listed below in order of decreasing
communication costs:

e RPUs coupled to the host bus: The connection is accomplished via a sys-
tem bus of the host subsystem. Many commercially available system boards
have opted for this arrangement as it implies minimal modification of the

22 2 Reconfigurable Architectures

General
Purpose ’

’
Processor } ’ Configuration
(GPP) 4 Memory

I._. :

. Configuration
SYSTEM N Controller

LOCAL .
MEMORY MEMORIES |

Fig. 2.9 Typical reconfigurable computing system

devices and the overall system organization such as virtual memory and sys-
tem software. Boards with RPUs vary in complexity, size, and cost, the most
sophisticated being composed of multiple RPUs, RAMs, and/or microproces-
sors. Some of these boards with RPUs connect to a PCI (Peripheral Controller
Interface) bus of a PC or workstation. Examples of reconfigurable computing
platforms connecting to the host via a bus include HOT-I, II [226], Xputer [146],
Splash [123], ArMem [250], Teramac [17], DECPerLe-1 [220], Transmogri-
fier [191], RAW [319], and Spyder [164].

e RPUs coupled as coprocessors: In this case the RPU can be tightly coupled to the
GPP but has autonomous execution and access to the system memory. In most
architectures, when the RPU executes, the GPP is stalled. Examples of such plat-
forms include the NAPA [264], REMARC [218], Garp [153], PipeRench [131],
RaPiD [101], MorphoSys [282], and the Molen paradigm [317].

o RPUs acting like an extended data-path of the processor and without autonomous
execution: The execution of the RPU is controlled by special opcodes of the
GPP’s instruction set. These data-path extensions are named as reconfigurable
functional units (RFUs). Examples of such platforms include the Chimaera [348],
PRISC [257,258], OneChip [329], and ConCISe [168].

There is also a trend to use the fine-grained structures of high-end FPGAs to
define System-on-a-Chip (SoC) solutions [35]. In these scenarios, FPGAs integrate
microprocessor cores such as the PowerPC microprocessor in the Xilinx Virtex-II
Pro devices [340], as hard VLSI macros. Another possibility consists of the use of
softcores. Softcores based on von-Neumann architectures have been widely used.
The most known examples of such microprocessor softcores are the Nios (I and II)
[16] from Altera and the MicroBlaze [345] from Xilinx. This approach provides a
simple migration path for legacy code and a clear programmer portability benefit
also leveraging mature software compilation tools. Softcores also allow the use of
highly customized interfaces between the components of the SoC. This approach of
softcores has the attraction of allowing for domain-specific softcores, e.g., architec-
ture templates based on coarse-grained arrays.

There are also examples of companies delivering their own microprocessor con-
figurable softcores, usually targeting domain-specific applications. One such ex-
ample is the softcore approach addressed by Stretch [297] which is based on the

2.5 System-Level Integration 23

Main Memory
ms;g;g:o" Data Fetch
Arbitrer Memory MUX
l—
| i
XREGs File [™ ¥
- g it T TEEEEES
Y y ! 11 CCU | HW
General | pu-code '<):(>E - i
oounit |
Register File |« PPurpase ! ! L :
rocessor | |-------2 = c-ITTmmmmIso
(GPP) Reconfigurable Processor (RP)

Fig. 2.10 The Molen polymorphic processor system organization

Tensilica Xtensa (a configurable RISC microprocessor) [134,305] and an extensible
instruction set fabric. This approach is very valuable for fine-grained configurable
architectures as it combines the benefits of a known programming environment with
the performance benefits of customization.

A concrete example of a reconfigurable system integrated with a microprocessor
is the Molen polymorphic processor [317] depicted in Fig.2.10. The main PE is
the GPP and the reconfigurable processor (RP), seen as the RPU of the system and
typically used to accelerate key kernel operations. The communication between the
GPP and the RP is performed via a special set of registers, called transfer registers
or XRs resembling a software remote-procedure-call (RPC). To invoke an opera-
tion on the RP, the GPP first activates the configuration of the RP for the specific
hardware operation, and in a second step prepares and sends the operation parame-
ters by transferring data to the XRs. In the next phase, the operation is executed
and the results made available to the GPP in the XR registers. The Molen con-
cept has been evaluated using FPGAs, with the GPP as a hardcore or a softcore
processor.

A key distinction between the Molen processor organization and previous recon-
figurable systems, with similar organization, is the ability of the Molen machine
to execute microcode for the emulation of complex operations which are executed
on the RP (denoted as pu-code). Generic set/execute instructions can be used
for the configuration/execution of any arbitrary operation, as long as they refer
to the appropriate pp-code. An arbitrary number of hardware functions can be
provided by architectural extension of set/execute instructions. Additionally, the
parameters of these hardware operations are not included in the set/execute in-
structions, as they can be directly encoded in the associated pu-code. The flexi-
bility of the Molen machine organization mitigates some issues with other system

24 2 Reconfigurable Architectures

integration approaches as Molen does not require a new instruction for each hard-
ware function. Furthermore, it imposes no limitation on the number of input/output
parameters. The level of integration and cross-compilation transparency supported
by the Molen machine organization effectively lowers the barrier for the use of
reconfigurable computing machines consisting of a microprocessor coupled to
an RPU.

2.6 Dynamic Reconfiguration

A unique feature of reconfigurable architectures is their capability to dynamically
reconfigure the hardware resources at run-time and possibly on demand. This re-
configuration, or programming of the architecture, is typically achieved by loading
the configuration data values to program reconfigurable resources. Reconfiguration
can be a complete (or full) configuration (i.e., programming all the reconfigurable
resources) or a localized (or partial) configuration operation (i.e., programming a
set of reconfigurable resources).

This reconfiguration process can be accomplished by the use of a variety of ar-
chitectural support mechanisms to store and apply configurations, namely:

Architectures with on-chip memory, able to store a set of configurations

e Multiple on-chip configuration planes, also called contexts (see, e.g., [309]), able
to switch very quickly between configurations

e On-chip configuration controllers, able to be programmed in order to orchestrate
the configuration of hardware resources based on a flow of configurations

Given the nontrivial costs of reconfiguration, either to load the configuration data
from an external device or simply because of the actual reconfiguration process, it
is common for systems to support a pipelined operation between the programming
of a given configuration and the execution with an active/existing configuration.
This overlapping of reconfiguration with computation mitigates, or even eliminates,
the reconfiguration time overhead. Figure 2.11 depicts an example of pipelining
reconfiguration and computation for an illustrative architecture that supports partial
reconfiguration. In this example, configuration 1 is being executed while portion b
of configuration 2 is being loaded and programmed onto the reconfigurable fabric.

Partial reconfiguration can be fine- or coarse-grained. In a fine-grained partial
reconfiguration, the architecture is able to individually change the logic function,
ALU operation of a specific FU, a connection, or the logic values of a set of bits
(e.g., to specify a new constant value). In a coarse-grained partial reconfiguration, it
is possible to change sets of FUs and interconnection resources based on columns,
rows, or selected regions. With RPUs that allow partial reconfiguration, it is possi-
ble to reconfigure regions of the RPU while others are executing. For architectures
supporting partial reconfiguration, and depending on the amount of the resources
to be reconfigured, the reconfiguration time might be substantially shorter than the
one required when only full reconfiguration is supported. Reconfiguration based on

2.6 Dynamic Reconfiguration

configuration 1

configuration 2

Programming
resources
of
configuration 1

Executing
configuration 1
and
programming
resources
of
configuration 2b

Programming
resources
with
configuration 2a

Executing
configuration 2

(b)

v

25

et
21
=

r
=L,

B
1]

[
r

28
MM
2]
B
0
2kl

i
r@

L
r
K

o
2}
=t

'
L

S
2]

r
r
L=

H)

r
(5
T

5
r
e
I
=

ﬁ
=

B

17
L

Ea
ykdyy

i
=2

Fig. 2.11 Example of partial reconfiguration and pipelined operation: (a) two configurations; (b)

execution flow

layers of on-chip configuration planes, selected by context switching, has been ad-
dressed by Ling and Amano [194, 195], DeHon [87], and Fujii et al. [113]. This
technique allows an efficient time-sharing of RPUs by more than one task, or by a
large task that can be partitioned in time to fit in the available reconfigurable area.

26 2 Reconfigurable Architectures

Despite its flexibility, partial reconfiguration is not widely available in today’s
reconfigurable devices. The lack of such support is prevalent in fine-grained recon-
figurable architectures. Partial reconfiguration in fine-grained RPUs raises the issue
of interference between two or more configurations, as they may dispute hardware
resources (e.g., interconnection resources or configurable blocks). Usually, to avoid
these interferences, designers direct tools to perform placement and routing of the
designs on disjoint areas of the RPU, which can be unfeasible when both designs
have to use the same resources, e.g., I/O ports. In addition, there is also the issue of
data saving and data communication between configurations. For coarse-grained ar-
chitectures, however, these issues are less problematic and most of them do support
partial dynamic reconfiguration and data communication between configurations
(see, e.g., the XPP [68]).

The architectural support for dynamic reconfiguration can also influence the ex-
ecution model of the underlying architecture. In Fig.2.12, we depict four generic
illustrative examples for reconfigurable architectures using a configuration cache
(Fig. 2.12a) or on-chip multicontext planes (Fig. 2.12b). In this illustration, fetch (F)
refers to the movement of configuration data between the off-chip memory and the
configuration cache or the multicontext planes, configure (CONF) or context-switch
(CS) refers to the actual configuration of resources in the architecture (from the
configuration data in the configuration cache or directly by context switching of the
multiple contexts, respectively), and compute (COMP) refers to the execution of
computations in the architecture with previously configured resources.

We now illustrate two scenarios with partial reconfiguration using the three
stages previously described (fetch, configure, and compute). In the first scenario
(see Fig.2.12d), configurations are locally applied to different areas of the archi-
tecture. When the computation completes with the first configuration, the execution
is ready to start the computation with the second configuration. In the second sce-
nario (Fig.2.12e), both configurations share areas of the architecture and the pro-
gramming of the second configuration can only be completely carried out after the
computation using the first configuration terminates. Note, however, that hiding the
programming or loading of a second configuration, as presented in Fig. 2.12d, is also
dependent on the computation and programming time of the two phases of reconfig-
uration being overlapped. Finally, we illustrate in Fig. 2.12f the concept of context
switching, where configurations already stored in the hardware context planes can
be activated in short time.

Dynamic reconfiguration raises the issue of the control flow of configurations.
To support control flow, the reconfigurable architecture may use a scheme to com-
municate events to the configuration controller by means of special connections or
special registers. A simple approach uses connections from the array (e.g., FU out-
puts) to the configuration controller to identify the next configuration or to signal
the end of the computation with the current configuration. An example of an archi-
tecture supporting this is the XPP [31]. In the XPP, events generated in the array can
be connected to special configuration controller ports, which can be used to trigger
the next configuration.

2.6 Dynamic Reconfiguration 27

PO
gLy i 03
DT
gL s g gL

EXECUTE

Configuration Configuration N
C)) =)

Memory Cache

MULTI-CONTEXT

FETCH " B RERR
i o ety o
‘B B
| “‘_,._ g (f',,,g,,1-_"_',,,‘5,,1"‘:;1:1’_“';:,g:{‘_*,
®r SR - B
Configuration j‘> .'_“_‘;-:‘ e IL{_:_:IL—;L,F S
Memory L F0E
""""""""" NI
EXECUTE
(c) ’ Fetch Configure Compute
’ F1 CONF1 COMP1
(d)
F2 CONF2 —»{ COMP2
F1 CONF1 COMP1
(e)
F2 CONF2 COMP2
Fi|§| comps
® -
F2 s COMP2 ‘

Fig. 2.12 Possible execution phases in reconfigurable architectures: (a) architecture with configu-
ration cache; (b) architecture with on-chip memory for fast context switching; (¢) execution stages
for architecture (a); (d-f) execution examples

28 2 Reconfigurable Architectures

Configuration Reconfigurable
> Cache L Array
o) c0
cl
c2

Configuration CMport0 -
Controller CMport1
c0;

If{CMPort0) then c1,
If({CMPort1) then c2;

A
4

Fig. 2.13 Conditional request of configurations c1 and c2 by configuration c0

Figure 2.13 depicts a simple example where one of two configurations (c1 or
c2) is configured and executed after the completion of configuration c0. Based
on the comparison result, one of these two configurations c1 or c2 is requested.
The configuration controller accommodates the microcode’ to execute the flow of
configurations related to the application under execution. It checks the configura-
tion controller ports and based on the value of the event starts the next configura-
tion step.

In this kind of architecture, prefetching is used to amortize the time required
for loading the configuration data onto the internal configuration cache. However,
whenever a configuration is not in cache, the configuration controller has to fetch it
from the external memory. In the case of the XPP, the configuration controller initi-
ates the programming of a subsequent configuration as soon as it is determined and
the execution of the current configuration has terminated. Another, more advanced,
possible reconfiguration process is to use partial reconfiguration as soon as the con-
troller determines the subsequent configurations. As each PE has a state flag that
identifies if it is being used or not, the configuration controller can use this informa-
tion to overlap the execution of the current configuration with the configuration of
subsequent ones. When configuring the hardware resources for a subsequent config-
uration, the configuration controller is able to configure first the resources not in use
by the current configuration. The completion of the loading and programming of
the subsequent configuration depends on the conflicting use of hardware resources
between the two configurations, on the execution time of the current configuration,
and on the total configuration latency of the subsequent configuration.

7 The configuration controller can be viewed as a microcontroller, a microprocessor, or a program-
mable FSM.

2.7 Computational and Execution Models 29

2.7 Computational and Execution Models

Fine-grained reconfigurable architectures have the potential to emulate many (if not
all) distinct computational models because of the fine granularity of their config-
urable elements and their extreme interconnection abilities. Using fine-grained ar-
chitectures, designers can use arbitrary computational functions and storage and,
more importantly, arbitrary control structures. The huge configurability space has
prevented the emergence of a high-level programming and coarse-grained execution
model, as designers and engineers in general wish to retain the freedom of design-
ing their custom architectures and execution models using low-level programming
languages and hardware abstractions.

Coarse-grained reconfigurable architectures have offered several distinct, yet re-
stricted, execution models specific to certain domains of application. Typically,
the functional and storage elements exhibit some configurability, but the control
schemes tend to be more limited. For these architectures, a handful of execution
models have naturally emerged dealing with data streaming and pipelining. Ex-
amples of those execution models have been considered in architectures such as
RaPiD [101], PipeRench [132], and SCORE [72,92].

In general, there have been different approaches to define a control scheme and
the corresponding execution model for the computations to be executed in reconfig-
urable architectures:

e Embedded control units such as specific FSMs, implemented with the resources
of reconfigurable architectures (used in FPGA designs), or control schemes
based on the static dataflow model (used in the XPP architecture), where a
ready/acknowledge protocol is used on each FU and specific control events may
flow through the FUs.

e VLIW type of instructions with the control flow being managed by a configura-
tion controller used in linearly oriented architectures such as RaPiD.

e A combination of the above two possibilities, where each VLIW type instruction
defines a configuration consisting of control and data-path units. This approach
can be used in FPGAs when the application is executed with more than one
configuration or in architectures such as the XPP.

In Fig.2.14 we illustrate the main difference between VLIW processor exe-
cution style and a coarse-grained reconfigurable architecture, in this case a one-
dimensional array (Fig. 2.14c). Using VLIW control (Fig. 2.14b), the movement of
data between operands is done using the register file (Fig. 2.14d). In some instances
the access to the data in the register file is constrained in time, as not all FUs might
have simultaneous access to all the registers (or to the same register file when in the
presence of cluster-based VLIW architectures). Thus, the assignment of an opera-
tion to an FU is driven not only by the capability of that FU to execute the operation
but also by the scheduling of the accesses to the registers. By exposing operation-
level parallelism, the compiler can schedule groups of operations to be part of each
VLIW instruction, as depicted in Fig. 2.14d.

30 2 Reconfigurable Architectures

r=a‘c-b*d
(a)
Register File FU FU FU FU
Register File y
(IR I NI X
FU FU FU FU
{b) {c)
[mui's5, 51, 2] mul 56, 53, 34 - - | i
Register File X X - FL
Register File Y *
Liv v bvv AWy
X X FU FU
<L abed r
subss 5,89 - | - -1 @
Register File
P Yv A v A dwy
— FU FU FU

(d)

Fig. 2.14 Example comparing VLIW-style architectures to reconfigurable architectures: (a) input
example; (b) VLIW architecture with a centralized register file; (¢) reconfigurable linear array (1-
dimensional); (d) possible execution of the example in the VLIW; (e) possible execution of the
example in the reconfigurable linear array

Reconfigurable architectures can be viewed as a set of FUs, as in VLIW-style
architectures, and programmable interconnection resources. In this case and as op-
posed to usual VLIW-style architectures, it is possible to directly interconnect FUs
(by chaining them as depicted in Fig.2.14c¢), thus allowing operands and results
to be transferred directly between them. This transfer, without the use of interim
storage elements (e.g., the register file), allows the implementation, in a single in-
struction (or configuration), of several levels of operations (Fig.2.14e). As invari-
ably the interconnection resources are limited, the assignment of operations to the
FUs (known as placement) can be an important factor for the routability between
the FUs as is usually the case in two-dimensional reconfigurable architectures.
Sophisticated interconnections, however, require advanced routing algorithms lead-
ing to long placement and routing steps.

2.9 Summary 31

Finally, an aspect of VLIW-oriented execution model, also used by reconfig-
urable architectures, is the use of if-conversion [11] and predicated execution tech-
niques to handle control structures (e.g., if-then-else). Examples of reconfigurable
architectures using predicated execution include the ADRES [208] and the XPP [31]
architectures.

2.8 Streaming Data Input and Output

Another key aspect of reconfigurable architectures is their unique ability to pro-
vide very high input and output data bandwidth. This is particularly significant in
real-time applications or when data (possibly from various sensors) needs to be
organized, processed, or classified in a short period of time. In this context, recon-
figurable architectures can directly provide hardware support for data access modes
(including streaming) in combination with pipelined execution techniques. This sup-
port is accomplished by several hardware mechanisms, namely:

e Specific address generation units coupled to the reconfigurable array allow it to
store and load data to/from the memories to the FUs. This is the solution used by
the Xputer [149] and RaPiD [101] architectures.

e Specific load/store operations in some of the cells of the architecture allow one
or more FUs to perform load and store operations over shared memory. This is
the solution used in the ADRES architecture [208].

e Configuration of architecture resources to create specific and distributed
load/store units to access internal or external memories of the array. In this
case, the memories are seen as additional array components and interconnection
resources and FUs are allocated to create the needed address generation units
and to route data from/to the memories to/from FUs. This is the solution used in
FPGAs and in the XPP [31].

In an effort to address the important stream-oriented data paradigm, researchers
have developed programming languages constructs with streaming semantics [127].
Typically, the high-level language streaming constructs are translated to FIFO buffer
hardware structures with dedicated hardware controllers to orchestrate the move-
ment of data between streams.

2.9 Summary

In this chapter we have summarized the fundamental aspects related to recon-
figurable computing architectures. We have described relevant fine-grained to
coarse-grained reconfigurable architectures. Although the arena of reconfigurable
architectures is dominated by companies (Xilinx and Altera) providing fine-
grained architectures, there have been several research efforts on coarse-grained

32 2 Reconfigurable Architectures

reconfigurable computing architectures both by academia and industry. Due to
the high flexibility of reconfigurable computing, supporting architectures are not
tied to any specific computational model and thus different models have been pro-
posed. This flexibility has also been the source of different compilation strategies as
emphasized in the following chapters.

Chapter 3
Compilation and Synthesis Flows

When mapping applications to reconfigurable computing platforms composed of
general-purpose processors (GPP) and reconfigurable architectures, compilers must
assume the dual role of compiling for a known instruction-set architecture (ISA)
and synthesizing an application-specific architecture to be implemented with the
hardware resources of the underlying reconfigurable architecture. The compiler is
thus responsible for the definition of the specific organization of the computing en-
gine implemented in the reconfigurable processing units (RPUs). As reconfigurable
systems offer the possibility of multiple processing elements (PEs), compilers must
deal with the many aspects of parallel computing and all its associated compilation
techniques, namely, processor synchronization, data partitioning, and code genera-
tion. It is thus not surprising that compilation for reconfigurable systems is noto-
riously hard as compilers must weave, in a coherent and effective way, techniques
from parallel computing with techniques from traditional hardware synthesis.

In this chapter, we outline and describe the main phases of a generic compi-
lation and synthesis flow for reconfigurable systems. We begin by highlighting the
specific responsibility of each compilation phase and their interplay. Given their sig-
nificance in terms of definition of the overall computing architecture, we describe
in detail the internal structure of common high-level synthesis and compilation for
fine-grained and coarse-grained reconfigurable architectures, respectively. We then
illustrate the application of the various compilation and synthesis concepts with ex-
amples of the mapping of computations expressed in the C programming language
to fine-grained and coarse-grained reconfigurable architectures. We conclude this
chapter highlighting a series of issues that directly impact the complexity and the
effectiveness of compilation and synthesis for these architectures.

3.1 Overview

Figure 3.1 depicts a generic compilation and synthesis flow for reconfigurable com-
puting platforms. In this description, we focus on aspects that deal with the inter-
action between the high-level compilation and synthesis for RPUs, and give less
emphasis to system-level organization issues.

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 33
DOI 10.1007/978-0-387-09671-1_3,
© Springer Science+Business Media LLC 2009

34 3 Compilation and Synthesis Flows

Description of
Computations
(program)

Front-End
IR
y
o Middle-End
Estimation
and N o Software
Modeling » Hardware/Software Partitioning | » Compilation
Parallelization

— Code transformations
Floating-point to Fixed-point conversion
Bit width narrowing

. s Compiled
Bit optimizations Executable
Array partitioning
A 4
. Temporal Partitioning
Architecture
Description »> Spatial Partitioning
Memory Mapping
Back-End
Scheduling, N Dcitr?t-r'glat:nziigd High-Level
Pipelining ‘]) Synthesis
generation
Placement .
and < Mapping «— RTL/Loglc
) Synthesis
Routing

A 4

Hardware
Configurations

Fig. 3.1 Generic compilation/synthesis flow for reconfigurable computing systems

3.1.1 Front-End

As with traditional compilation flows, the typical compilation and synthesis flow
for reconfigurable architectures is structured as a sequence of phases. First, a front-
end phase interfaces the input program or computation specification decoupling the
specific aspects of the input programming language (e.g., its syntax) from an in-
termediate representation. This front-end is similar to any compiler front-end for

3.1 Overview 35

traditional programming languages in that it validates the syntax of the input pro-
gram and possibly applies syntactic-level transformations such as macroexpansion
or function inlining. Depending on the input language, the front-end may map con-
structs in the input code to sequences of intermediate representation instructions
exposing their underlying sequential and concurrent nature while preserving the
semantics of the input language. For instance, for languages with nondeterminist
evaluation order, the front-end can impose a specific order or generate a concurrent
evaluation representation. It is uncommon for front-ends to apply source-to-source
transformations that are specific to the underlying reconfigurable architecture, but
rather relegate these transformations to the middle-end.

3.1.2 Middle-End

Next, the flow is composed of a middle-end where it applies a diversity of
architecture-independent transformations (e.g., elimination of redundant memory
accesses) and architecture-dependent transformations (e.g., array data partitioning)
without engaging in specific code generation or synthesis for the target reconfig-
urable devices.

As many of the reconfigurable computing platforms include a traditional GPP,
the partitioning of the overall computation and data between the GPPs, called the
software components, and the RPUs, called the reconfigurable hardware component,
is a key aspect in this phase. This hardware/software partitioning [192] is typically
guided by estimates of specific performance metrics such as execution time, hard-
ware resources needed, power dissipation, and/or consumed energy.

Given the high costs of reconfiguration in current architectures, this partitioning
can also be instrumental in hiding the latency of the reconfiguration processes. By
scheduling the reconfigurations at appropriate points in the execution of the pro-
gram, the overlapping between reconfiguration and execution can be maximized
hence hiding, in some cases even completely, the execution time cost of reconfigu-
ration [237].

After hardware/software partitioning, the software component is compiled onto
a target GPP using a native compiler for that specific processor. The components
of the solution mapped to the RPU are subject to different compilation approaches
according to the RPU type. Two main approaches are common for this compilation.
For fine-grained reconfigurable architectures (e.g., FPGAs) the middle-end (in co-
operation with the back-end) will be responsible by the complete definition of the
RPU component of the system and the communication scheme between the RPU
and the GPP or in the case of a system with multiple RPUs, the communication
between them. For these fine-grained architectures this definition is accomplished
using a hardware-oriented synthesis tool. For coarse-grained reconfigurable archi-
tectures, where some of these communication aspects may already be directly sup-
ported by the underlying architecture, the definition of the communication schemes
is performed by synthesis-related steps of the flow that establish the routing of the
data through the various RPUs and the GPP.

36 3 Compilation and Synthesis Flows

Irrespective of the granularity of the target architecture, the middle-end still needs
to partition that data and the computation, and orchestrate the execution of the
computation among the many units by the insertion of communication primitives
or instructions to ensure the communication of data in a timely fashion. The parti-
tioning process may be even more complex when the target architecture has multiple
PEs and/or when the communication schemes between them have been defined at
design time, as is common for embedded systems [212].

The existence of a truly multiprocessing execution environment also requires the
compiler to make decisions about the execution models to use, such as pipelining,
either fine- or coarse-grained, or whether to take advantage of multithreading execu-
tion techniques to exploit as much concurrency as possible. While some code trans-
formations used by the middle-end exploit high-level architectural aspects, such as
the existence of multiple RAM modules to increase the availability of data, other
transformations exploit the ability to customize specific functional units (FUs) to
directly implement high-level instructions in hardware.

We can thus classify the transformations the middle-end applies in three broad
categories, namely:

e Spatial-Oriented: Given the spatial nature of reconfigurable architectures and
their inherent limited resources, the compiler must perform spatial partitioning
of the data and computations. These transformations include the partitioning,
allocation, and management of data between internal storage resources so that
data and computation are collocated.

e Temporal-Oriented: In this class of transformations, we include all execution-
related transformations that schedule, either using fine- or coarse-grained tech-
niques, the computation onto the available RPUs. These include pipelining
execution, assigning to each RPU a specific function, or partitioning, in a time-
shared fashion, the computations among the available resources.

e Custom-Oriented: The transformations in this class exploit application-specific
arithmetic formats and operations. These include arithmetic conversions between
operations in floating-point formats to use fixed-point or nonstandard bit-width
formats, representations, or rounding modes.

As highlighted in Fig. 3.1, memory mapping of the data, in space and time, is
a key aspect in a reconfigurable system. At a high-level system organization, there
is rarely the abstraction of a single address space. Common reconfigurable archi-
tectures have local RAMs and/or memory modules that can be programmed to be
organized in a variety of bit-width memory sizes and depths. Each memory has its
own addressing space and corresponding addressing hardware structures. As a re-
sult, it is uncommon to have hardware translation mechanisms that enforce any sort
of data consistency between memories. The reconfigurable features, both on routing
data and customizing storage units, place a burden on the compiler to orchestrate
the flow of data between the various memories to match in space and in time with
the execution of the computations in the various RPUs.

3.1 Overview 37

A typical middle-end thus largely supports the bulk of the efforts in the com-
pilation flow and commonly makes use of supporting mechanisms and techniques,
namely:

e Architecture Description: This description, commonly embedded in the com-
pilers’ internal algorithms, allows the compilation flow to determine the number
and capacity, in terms of computing elements (e.g., configurable logic blocks or
simple RAM modules) of existing reconfigurable devices. The knowledge of the
relative capacity and speed of storage structures and their placement with respect
to computing elements allows the compiler to perform judicious decisions about
data and computation partitioning, as well as register versus memory caching.

e Estimation of Mapping Decisions: These estimates provide the compiler with
an approximation in terms of resources and/or execution time for a specific map-
ping choice. Compilers use these estimates to adjust the aggressiveness of their
mapping strategies. For instance, while applying loop unrolling a compiler can
quickly exceed the available hardware resources. When back-end phases such as
placement and routing require extremely long time, estimation provides a reason-
able trade-off between hardware design accuracy and design exploration time.

Most, if not all, commercial tools rely on programmers to dictate the applica-
tion of the supported transformations, either by use of directives or indirectly via
constraints used in internal algorithms. Various research prototypes have shown the
value of using estimates to effectively drive transformations and mapping algorithms
(see, e.g., [96, 180]). Some design-space exploration algorithms use feedback from
previous mappings in the form of estimates to backtrack and possibly undo several
high-level transformations. By using estimates derived in a fraction of the time, that
it would take for a compilation flow to derive the actual designs, tools can effectively
explore a wide range of mapping choices that would be otherwise impractical.

3.1.3 Back-End

Lastly, the compilation flow includes a back-end for code generation and archi-
tectural synthesis. The architectural synthesis can be accomplished by a combina-
tion of two synthesis forms. In a first form, architectural synthesis is performed
using a set of basic primitive blocks such as memories, registers, and predefined
custom library blocks. The reconfigurable fabric implements those blocks and arbi-
trary topologies using its reconfigurable hardware resources. Once the target ar-
chitecture is defined, the back-end schedules the execution of macro-operations
and/or instructions alongside the generation of the concrete hardware architecture
to carry out these operations. In a second form, a reconfigurable architecture na-
tively supports a predefined, less flexible, set of operations. This is the case of
coarse-grained reconfigurable arrays where the computations must be mapped to
the underlying PEs (e.g., ALUs). A combination of the both forms is possible when

38 3 Compilation and Synthesis Flows

the underlying fine-grained reconfigurable resources are used to combine high-level
hardware templates that resemble the typical coarse-grained architectures, with the
arbitrary blocks and topologies.

The back-end is thus responsible for the following concrete steps:

e Code Generation: This step is responsible for augmenting the source code, or
the translation to intermediate format, with primitives to load the configurations
in the RPU, synchronize their execution, and orchestrate the movement of data
throughout the execution. Typically, it focuses on high-level scheduling and map-
ping abstractions, such as the mapping of data to global memories and synchro-
nization between RPUs or the coarse-grained pipelining of the execution. The
interaction with a host processor and the interface with a global memory are also
addressed in this step.

e Architecture Synthesis: This step performs the synthesis of the specific hard-
ware architecture to execute the computations assigned to each RPU. Typically,
this synthesis performs the classical steps of allocation, scheduling and binding
of low-level operations given the hardware and execution time constraints de-
rived by the application of high-level transformations. The resulting bit-stream
configuration (the set of bits that define the hardware design) is to be loaded on
the appropriate RPU, which, and depending on the specific features of the RPU,
can include classical instructions with a mix of programmable logic definitions.

The back-end code generation step outlined here commonly relies on system-
level abstractions, such as the organization of the overall data streams and stor-
age, and on the existence of a set of primitives for data communication, loading
of configurations, and execution synchronization reminiscent to operating systems’
services. These primitive services are typically very specific to the overall system
organization of each reconfigurable system, such as address space organization,
data consistency, and distributed control. The variety of system organizations us-
ing RPUs has, we believe, led to the lack of the definition of a de facto standard
Application Programming Interface (API) to provide a common interface to a wide
variety of systems.

The architecture synthesis step is also very dependent on the target reconfig-
urable fabric. In many instances, the fabric explicitly defines the internal and exter-
nal organization characteristics of data-paths, FUs, and the corresponding execution
controllers and address generation units designed to carry out the execution of the
computation assigned to each RPU. In hybrid reconfigurable devices, such as emerg-
ing FPGAs with hardcores or softcores and programmable logic, compilation and
synthesis can be truly mixed in the same step. While in many cases these steps are
accomplished by the integration of commercial synthesis tools using target-specific
component library modules, other efforts have developed their own approaches to
map their computations onto the RPU using specific techniques that take advantage
of particular architectural features.

3.2 Hardware Compilation and High-Level Synthesis 39

3.2 Hardware Compilation and High-Level Synthesis

We now outline the main phases of hardware compilation and synthesis approaches
as they provide the interface to the high-level hardware compilation flow depicted
in Fig.3.2. This high-level hardware compilation flow is organized into three ma-
jor phases, namely, High-Level Synthesis (HLS) [114], RTL and Logic Synthe-
sis [210], and Placement and Routing [266]. Still in the same flow, the compiler
can internally generate an architecture using specific optimizations and including
the required high-level synthesis steps. In this scenario, the flow usually outputs a
behavioral RTL-HDL (Register Transfer Level-Hardware Description Language)
hardware description as the input to RTL/logic synthesis. In this approach, the ar-
chitecture is completely tuned to the application and it is built aware of the charac-
teristics of the fine-grained resources of the target architecture.

High-Level Computation
Specification

!

A 4

High-Level Synthesis High-Level Compilation
Scheduling Scheduling
Allocation Allocation

Binding Binding
Memory Inference Memory Inference/
Generation of FSM and Allocation
Data-path Integration Generation of Control
Steps and Data-path
RTL Specification Integration
v Logic Optimizations
Retimi
RTL and Logic Synthesis iming
Translation into Gates
Logic Optimizations
Retiming Native Programming
Technology Mapping Language (assembly)
l Net-list specification
A 4
Placement and Routing Placement and Routing
(P&R) (P&R)
Physical Design Programmable Architecture Programmable Architecture
(bit-stream) (bit-stream)

Fig. 3.2 Hardware compilation and high-level synthesis

40 3 Compilation and Synthesis Flows

Overall the granularity of the target reconfigurable architecture drives the kind
of hardware compilation approach. When targeting fine-grained reconfigurable ar-
chitectures, the compilation and synthesis flow may use high-level synthesis [114]
tools for generating the application-specific architecture and then use RTL/logic
synthesis [51,210] tools for mapping this architecture to basic logic components.
The input to this flow consists of a high-level representation of the computations
using a common HDL, such as VHDL [162] or Verilog [163]. This specification
is usually referred as behavioral at algorithmic level,! as the binding in time and
space of its basic operations is not explicitly defined. A possible approach for the
compilation flow, used for example in the DEFACTO compiler [96], relies on the
compiler to generate the input HDL algorithmic representation required by this
high-level synthesis flow from the computation’s intermediate representation. The
flow then leverages the capabilities of high-level synthesis tools to generate a feasi-
ble hardware implementation that meets the required performance and architecture
resources constraints.

In the variant of the flow targeting coarse-grained reconfigurable architectures,
the compiler translates high-level input operations into sequences of macroinstruc-
tions to be executed by each of the coarse-grained PEs. While the compiler now has
a lesser role in architecture definition (as it relies on the existence of well-defined
building blocks of the underlying architecture), it still needs to generate a mix of as-
sembly and reconfigurable instruction descriptions. This compilation does not elim-
inate the need for data and computation partitioning as each PE typically performs
ALU operations and has very limited local data storage. Despite the coarser gran-
ularity of the target architecture, the compiler still needs to engage in a form of
placement and routing to assign operations to physical PE resources and to channel
the data through the physical interconnection resources.

In both these compilation and synthesis flows variants, the output is a very pre-
cise specification of the execution of the input computations taking into account
the hardware resources and time allocated for the execution. This very low-level
specification can take on many forms depending on the precise nature of the target
architecture. Compared to an ASIC (Application-Specific Integrated Circuit) design,
where the flow must generate, possibly with the help of a library of standard cells
or custom cell macros, a mask specification for fabrication, the flow for a program-
mable architecture must generate a bit-stream with the precise configuration of its
many programmable points.

3.2.1 Generic High-Level Synthesis

High-level synthesis, also commonly referred to as behavioral synthesis and archi-
tectural synthesis, performs the three basic high-level functions or steps of alloca-
tion, scheduling, and binding [114], possibly carried out in this order. These basic

! We adopt here the widely accepted taxonomy presented in [320].

3.2 Hardware Compilation and High-Level Synthesis 41

functions typically use a library of components consisting of hardware resources
such as registers, multiplexers, and basic arithmetic and logic operators. Before
these steps, however, the flow translates the input HDL description to an internal
representation form commonly using a control/data-flow graph (CDFG) representa-
tion [114]. After this translation, the high-level synthesis flow performs allocation
in which it determines which operations in the CDFG are to be allocated to what
kind of FUs. Based on the allocation decisions and possible timing and/or resource
constraints, the flow determines the scheduling of the operations, i.e., which opera-
tions are executed at each control step (commonly corresponding to a clock cycle).
In the following step, binding, the flow determines, based on the previous allocation
and scheduling steps, which operations are executed by each FU instance. Lastly,
the flow derives, from the schedule and binding of operations, a finite-state machine
(FSM) to control the underlying data-path that consists of the FU instances, regis-
ters, and additional routing logic.

Although conceptually simple, high-level synthesis hides many challenging as-
pects. For instance, the scheduling is highly dependent on the mapping of data to
memories and the number of data ports they offer as well as the use of pipelined
components as are the cases with multipliers and RAMs. Many commercial high-
level synthesis tools provide an interface that allows users, and in their absence
compilers, to define the number and kind of resources available (e.g., FU types and
instances) as well as the mapping of array variables to RAM modules. In addition,
the input language allows for users to specify which loops should be unrolled and in
some case by how much. These facilities allow designers to explore a wide range of
hardware implementations for a variety of resources and memory mapping settings.

To illustrate the variety of design choices possible in high-level synthesis, we de-
pict in Fig. 3.3 a hardware synthesis example for a loop construct in VHDL that ma-
nipulates several array variables. The figure depicts three alternative design choices,
denoted as implementations A, B, and C, high-level synthesis may consider, based on
the use of pipelined execution techniques and on the number of hardware multipli-
ers available. For each of the three implementations we illustrate the corresponding
execution schedule for a sample choice of memory access latency of three clock
cycles and considering an array variable mapping where each array is mapped to
a distinct RAM module. Mapping various array variables to the same RAM mod-
ule would lead to different schedules given the potential RAM contention issues.
We further assume that multipliers have a latency of four clock cycles and when
pipelined have an initiation interval of one clock cycle. Addition/subtraction opera-
tors are nonpipelined with a latency of two clock cycles.

3.2.2 Customized High-Level Synthesis for Fine-Grained
Reconfigurable Architectures

In this variant of high-level synthesis, the compilation flow targets a fine-grained
reconfigurable architecture that is organized as a set of highly parameterized and

42 3 Compilation and Synthesis Flows

FOR i IN 0 TO N LOOP
X(i) := (a(i) * b(D)) - (c(i) * d(@) + f(0);
END LOOP

read a(i)

E [

@ multiplication

E read c(i)
e read d(i)

E multiplication

sub

H

(a) Data-path design solution A using 6 registers, (b) Schedule for design solution A.

read a(i)
read b(i)
read c(i)
read d(i)

2 multipliers and 2 adder/subtracters.

multiplication

multiplication|

(c) Pipelined data-path design solution B using (d) Schedule for design solution B.
9 registers, 2 multipliers and 2 adder/subtracters.
read a(i)
read b(i)

read c(i)
read d(i)

sub

multiplication | multiplication|

(e) Pipelined data-path design solution C using (f) Schedule for design solution C with a
13 registers, 1 multiplier and 2 adder/subtracters. non-pipelined multiplier.
read a(i)
read b(i)
multiplication

sub

read f(i-1) read f(i)

[add | [add |

write x(i-1) write x(i)

(g) Schedule for design solution C with a
pipelined multiplier.

Fig. 3.3 Illustrative high-level synthesis examples

3.2 Hardware Compilation and High-Level Synthesis 43

programmable structures. Thus, this customized flow generates application-specific
architectures aware of the particular features supported by the target RPU, e.g., the
vast number of distributed registers, local memories, distributed multipliers or DSP
blocks, hardware virtualization schemes by time-sharing reconfigurable hardware
resources among multiple configurations, etc. Another important characteristic of
this flow is the fact that it targets an architecture with a predefined layout of config-
urable hardware structures and not an open layout present when designing ASICs.
This aspect leads to high-level synthesis steps typically not strongly driven by re-
source sharing schemes as with in generic high-level synthesis tools.

As with the previous high-level synthesis approach, the compiler engages in
some form of architecture design exploration to determine the best parameters val-
ues for each hardware structure. Once this selection is made the compiler relies on
synthesis tools, such as RTL synthesis, to generate the concrete solution. Unlike
the previously described generic high-level synthesis flow, this flow leverages the
structure of the target fine-grain reconfigurable devices which might in some cases
impose various space and timing constraints in the characteristics of the generated
hardware implementations.

To illustrate this hardware compilation approach we use a sample C code segment
that computes the integer values for several hypotenuses as depicted in Fig. 3.4a.
Figure 3.4b depicts the corresponding instruction-level CFG. By forming a DFG
corresponding to the computations, a compiler can easily generate the architecture
shown in the block diagram of Fig. 3.4c.

As with generic high-level synthesis flow, the generated architecture consists of a
control and a data-path unit, where the data-path does not consider sharing of hard-
ware components and assumes the existence of the instantiated FUs from a library of
synthesizable VHDL components (e.g., multiplier, adder, square root). In this case,
we consider that each array variable is mapped to a specific local memory and thus
the calculations of the addresses correspond to values of the variable i. The control
unit can be generated directly from the control-flow graph (CFG) representation [9]
where each CFG node, corresponding to a statement in the code, is directly assigned
to a state of a FSM controlling its execution.

This simple translation between the CFG representing the computation and the
corresponding FSM does not exploit several opportunities for concurrent operation
execution. We depict in Fig. 3.5a a modified CFG for the example code where in-
structions to be executed in parallel were merged in the same CFG node as are the
cases of memory loads for arrays A and B. The state transition graph (STG) depicted
in Fig. 3.5b represents the FSM for the corresponding control unit. From this FSM
description and the data-path structure depicted in Fig. 3.4b, a compiler can directly
generate the VHDL code depicted in Fig. 3.6 implementing both the data-path and
the control unit.

An alternative translation to behavioral RTL-VHDL is depicted in Fig. 3.7. This
translation relies on the joint representation of a Finite-State Machine with Data-
path (FSMD) [115] for the overall computation. This joint representation allows
for a simpler translation to RTL-VHDL as it does not require an explicit structural

44 3 Compilation and Synthesis Flows
Yes
al=A[i];

#define N_TRIANG 64;
int AIN_TRIANG], BIN_TRIANG], HIN_TRIANGI;

for(int i=0; i<N_TRIANG; i++) {
intal = A[i];
int b1 = BJ[i];
intadd =at*al + b1*b1;
int hip = sqrt(add);
HIi] = hip;

(a) (b)

Data-Path
—» AddrA —» | MEM MEM
clk 0 | » Add +r
rB
L1 » sel_i \—»ld_ab—“ REG a1 | -+ REGDY |
reset |

> 1d_i REG i | X | |

Control
Unit
start —»{ N_TRIANG
by
INC LT
done <+— SQRT
< It

L Addr H——— T vEM

@ [—

X e

A

» we >,

(c)

Fig. 3.4 Hardware compilation example: (a) high-level description (C code); (b) instruction-level
CFG; (c) block diagram of data-path and control units

data-path definition. It does not, however, directly support multicycle operations.
To support these multicycle operations, compilers either decompose the original
operations in stages and assign the different stages to distinct FSM states, or abstract
multicycle components as structural components.

Both these approaches for the generation of data-path and control units create
VHDL specifications that directly use RTL and logic synthesis to create complete

3.2 Hardware Compilation and High-Level Synthesis 45
Default:
1d_i='0";

Id_ab="0";
we="0";

—>| If(i<N_TRIANGLES) I No —>| If(it=="1) |N—°
¢Yes ¢Yes
A4 A 4
| a1=A[i]; b1=B]; | done | 1d_ab="1"; | < done >

| add=a1*al+b1*b1 | | |

! v

| hip=SQRT(add); | | |

!

| e | |we="1" sel_i=1:1d_i=15
]
(@) (b)

Fig. 3.5 Control unit generation example: (a) modified CFG; (b) state transition graph

hardware design specifications. Other approaches that generate algorithmic VHDL
code, as illustrated by the example in Sect. 3.3, rely on the capabilities of an external
high-level synthesis tool.

As with generic high-level synthesis tools, most compilation approaches use a
repository of FUs. Typically, each FU and the corresponding control unit are de-
scribed at behavioral RTL-HDL level and require logic synthesis for the generation
of its logic structures. Alternatively, compilers can generate specifications for con-
trol units as microprogrammed units, or simple one-hot encoding FSMs, thus possi-
bly requiring simple mapping steps or even avoiding the use of logic synthesis tools.
In some extreme cases, the FUs can be represented as circuit generators [36,79,209]
of the hardware structures of the target reconfigurable architecture, eliminating the
need for logic synthesis. Leveraging logic synthesis for hardware generation offers,
nevertheless, the advantages of better portability, as HDL input descriptions may
not explicitly use specific components of the target architecture.

3.2.3 Register-Transfer-Level/Logic Synthesis

RTL/logic synthesis translates hardware specifications in RTL, possibly generated
by high-level synthesis, into equivalent circuit specifications in terms of logic
gates. The input to RTL synthesis consists of a description of the operations im-
plemented by a hardware design specifying the inter-clock behavior of each oper-
ation. RTL/logic synthesis translates these operations into gate-level descriptions,

46 3 Compilation and Synthesis Flows

library IEEE; 0
. . library |EEE;
use |IEEE.STD_LOGIC_1164.ALL;... use IEEE.STD_LOGIC_1164.ALL:...
entity pitagoras is
. & entity control_unit is
Port (clk : in STD_LOGIC; reset : in STD_LOGIC; L : . .
start :in STD_LOGIC; done : out STD_LOGIC;...); SRR eI ted
end pitagoras; end com-rorl‘ unit; e - ok
arccl:;(;s:r:z;?ézvmrsl of pitagoras is architecture Behavioral of control_unit is
GENERIC (.. PORT (TYPE states IS (RESET_STATE,WAIT_START,INIT_STATE,..);
10 tin std_logic_vector(w_in1-1 downto 0); b :é‘i;:al CURRENT_STATE, NEXT_STATE: states;
" tin std_logic_vector(w_in2-1 downto 0);
00 sout std_logic_vector(w_out-1 downto 0)); 228&535 (CURRENT_STATE, start, It
END it;
component; done <= '0'; sel_i <='0";
component It Id_ab <="0% Id_i <= '0°,
GENERIC (w_in : INTEGER := 16); PORT (CASE CURRENT_STATE IS
() H std_logic_vector(w_in-1 downto 0); WHEN RESET. STfTE => .
(] std_logic_vector(w_in-1 downto 0); W:EEI)\I(-l\—ITIﬁS\IrATSE';E':'NAlT_START’
00 Out std_logic) = =>
END component; 910% if ((start ='1") then NEXT_STATE <= INIT_STATE;
constant N_TRIANG : integer := 64;... else ‘NEXT_STATE <= WAIT_START ;
signal reg_i, inc_i, mux_out: std_logic_vector(\MIDTH-1 downto 0); w:g:\j ':N T_STATE
begin e
MEM1: MEM generic map(32,ADDR_WIDTH,N_TRIANG) port map(d_in=>in1, sel_i<='0" ld_i<="1";
addr=>REG_i(ADDR_WIDTH-1 downto 0),we=>we1,clk=>clk,d_out=>a1); NEXT_: STATE <= LOOF' HEADER;
REG1: reg generic map(32) port map(clk=>clk load=>Id_ab,D=>a1,Q=>a1_req); W';i:‘ L?'?‘F'" Hi‘ggRs;ATE LoOP BODY 1
=" en = <= | A1
MEM2: MEM generic map(32,ADDR_WIDTH,N_TRIANG) port map(d_in=>in2, else NEXT_STATE <= END_STATE;
addr=>REG_I((ADDR_WIDTH-1 downto 0),we=>we2,clk=>clk,d_out=>b1); end if;
REG2: reg generic map(32) port map(clk=>clk load=>Id_ab,D=>b1,Q=>b1_reg); WHEN LOOP_BODY_1 =>
Id_ab <="1",
sqrt_out(31 downto 16) <= (others =>'0); NEXT_STATE <= LOOP_BODY_2;
MUL1: mul generic map(32,32,32) port map(l0=>a1_reg,l1=>a1_reg,00=>m1_out); WHEN LOOP_BODY_2 =>
MUL2: mul generic map(32,32,32) port map(l0=>b1_reg,11=>b1_reg,00=>m2_out); NEXT_STATE <= LOOP_BODY_3;
ADD1: add generic map(32,32,32) port map(10=>m1_out,11=>m2_out,00=>add_out); WHEN LOOP_BODY_3 =>
SQRT1: sqit port map(A=>add_out, SQRT_A=>sqrt_out(15 downto 0)); sel_i<="1"; Id_i<='"1"; we <="'1";
NEXT_STATE <= LOOP_HEADER;
MEMB3: MEM generic map(32,ADDR_WIDTH,N_TRIANG) WHEN END_STATE =>
port map(d_in=>sqrt_out, done <= "1
addr=>REG_I(ADDR_WIDTH-1 downto 0),we=>we3,clk=>clk,d_out=>out1); NEXT_STATE <= WAIT_START;
END CASE;
MUX1: mux generic map(WIDTH) END PROCESS;
port map(sel=>sel_i,11=>inc_i,I0=>ZERO, 00=>mux_out);
REG3: reg generic map(WIDTH) PROCESS (clk, reset)
port map(clk=>clk,load=>Id_i,D=>mux_out,Q=>req_i); BEGIN
INC1: inc generic map(MWIDTH,WIDTH) port map(l0=>reg_i,00=>inc_i); if (reset ='1%) then
LESS_THANA1: It generic map(WIDTH) port CURRENT_STATE <= RESET_STATE;
map(10=>reg_i,11=>CONV_STD_LOGIC_VECTOR(N_TRIANG WIDTH),00=>It1); elsif (clk'event and clk = 1) then
CURRENT_STATE <= NEXT_STATE;
FSM1: control_unit port map(il Lt=>1t1, s end if;
done=>done,sel_i=>sel_id_i=>Id_iwe=>we3, Id_ab=>Id_ab); END PROCESS;
end Behavioral; end Behavioral;
(a) (b)

Fig. 3.6 Behavioral RTL-VHDL ready for RTL and Logic Synthesis: (a) data-path structure with
the control unit; (b) control unit description

resulting in a net-list output specification with logic gates and register components
that comprise the data-path and its controller.

A technology mapping process is thereafter performed by logic synthesis tak-
ing as input a net-list specification and mapping the logic gates specification to
the hardware resources supported by the target architecture or hardware library. In
this mapping process, logic synthesis attempts to minimize the hardware resources
and/or critical path delays by exploiting specific target architecture features as is
the case of carry-chains in the implementation of adder circuits. For fine-grained
reconfigurable architectures, this synthesis process maps gate-level specifications
to pre-existing configurable logic elements in the target architecture [51]. In this
case, the flow performs the mapping of gates (or sets thereof) to these configurable
elements, a step known as mapping [210].

Advanced RTL/logic synthesis tools include various optimizations for speed
and area, e.g., to increase operating clock frequency and/or to minimize hardware

3.2 Hardware Compilation and High-Level Synthesis 47

;Irchilecture Behavioral of FSMD is
TYPE states IS (RESET_STATE, WAIT_START, 80, §1,..)
signal CURRENT_STATE, NEXT_STATE: states;

begin
PROCESS (CURRENT_STATE, start)
variable i, ...
BEGIN
done <= 0", ...
CASE CURRENT_STATE IS

MEM1addr=i;
MEM2addr=i;
ReadMEM1="1";
ReadMEM2="1"; WHEN S0 =>
a3 l i=0)
SToVEV oL NEXT_STATE <= §1;

A2=MEMZout; WHEN §1 =»
il el if(i<N) NEXT_STATE <= §2;
: else NEXT_STATE <= END_STATE;
end if;

Y MEMTacar
MEM2addr
ReadMEM1 :
ReadMEM2 = '1";
NEXT_STATE <= 83;

WHEN 83 =>
al = MEM1out;
a2 := MEM2out;
add = a1*a1+b1*b1;
NEXT_STATE <= 54;

WHEN 54 =>
hip := SQRT(add);

{b) NEXT_STATE <= 85,

WHEN 85 =>

MEM3in := hip;
WriteMEM3 :="1";
j++;
NEXT_STATE <= 81,
WHEN END_STATE =>
done <= '{";
NEXT_STATE <= WAIT_START,
END CASE;
END PROCESS;

PROCESS (clk, reset)
BEGIN
if (reset ='1") then
CURRENT_STATE == RESET_STATE;
elsif (clk'event and clk = '1") then
CURRENT_STATE <= NEXT_STATE;
end if;
END PROCESS;
end Behavioral;

Fig. 3.7 Behavioral RTL-VHDL using an FSMD description style: (a) algorithmic state machine
(ASM) chart; (b) part of the corresponding VHDL

resources, respectively. One such important optimization is retiming [210], which
aims at minimizing critical path delays by moving, and possibly inserting, registers
throughout the circuit at the operation and/or gate level. Even though the overall
latency of the implementation is unchanged, retiming may lead to faster executions
as it enables the use of higher clocking rates, thereby increasing the throughput of
its pipelined execution.

48 3 Compilation and Synthesis Flows

3.2.4 High-Level Compilation for Coarse-Grained
Reconfigurable Architectures

A second variant of a high-level compilation flow targets coarse-grained reconfig-
urable architectures as depicted in Fig.3.2. In this flow, the compiler constructs,
using coarse-grained PEs such as ALUs and predefined interconnection blocks, a
computing engine that offers a register-like instruction execution model. Given the
constrained control and data-path structures at its disposal, the compiler has less
freedom to match application-specific operations to the underlying architecture than
with previous fine-grained reconfigurable architecture flows.

Besides the inclusion of common front-end and middle-end phases shown in
Fig. 3.1, compilers for coarse-grained reconfigurable architectures have a back-end
phase that generates an RTL description of the target code and typically do not re-
quire traditional logic synthesis or high-level synthesis. They still require, however,
and often in a combined fashion, scheduling and placement and routing steps. The
scheduling step is responsible for the generation of the execution control in each
PE using either microcode (as in the RaPiD [101] architecture), or special control
structures distributed in the reconfigurable array (as in the XPP [31] architecture).
In the placement and routing step, the compiler assigns the register-like instructions
to each PE and routes the results between them.

Regarding memory operations, there are two general scenarios. In one scenario,
the architecture directly supports load/store memory operations in specific PEs that
interface memory modules (memory accesses are performed as common processor
load/store instructions). In a second scenario, all the data communications to/from
memories are carried out by specialized memory interface units using customized
address generation units. In this second scenario, the compiler may generate both
control specifications and address generator units for selected PEs to synchronize
the execution of the PEs with the memory interface units.

We illustrate this approach in Fig. 3.8 using the structure generated for the ex-
ample in Fig. 3.4a, when targeting a coarse-grained data-driven reconfigurable ar-
chitecture. We use as reference the XPP architecture [31] which directly supports
a ready/acknowledge protocol between the PE components. The block diagram in
Fig. 3.8 reflects a high-level data-flow organization of the original code. In this case,
a counter (CNT_UP) is used to implement the original for loop behavior. One key
aspect of this data-driven architecture, with a ready/acknowledge protocol, lies on its
need not to delay the signals wr and Addr_H. A write access can stall the counter
operation while waiting for the data from one PE to ensure the correct values are
output to memory. To implement loop pipelining, the hardware implementation re-
quires a sequence of registers to save the successive values of wr and Addr_H. The
values for these signals are saved in a tapped-delay line until they reach the output
memory while the counter is able to continue its operation. Although these details
are very specific to a given architecture, they reflect the granularity of data and com-
putation synchronization arising when compiling to coarse-grained architectures.

3.2 Hardware Compilation and High-Level Synthesis 49

» rd
| ¥ ¥
start —»; U
—» Addr A—» | MEM |-> MEM
N_TR|ANG —® CNT UP
1 , I~ Addr B
0 A4 A,
END. | x|

— Addr H

A 4

» wr >

ewr <

Fig. 3.8 Data-path organization example when targeting a data-driven coarse-grained reconfig-
urable architecture

In the case of the XPP, the hardware specification outlined above is output by the
XPP-VC compiler [68] as an NML description, the XPP internal mapping language.
The NML language represents XPP components, such as memories and operations
(designated as XPP objects), to be mapped to the PEs of the array, and the intercon-
nections between them to be routed through the physical interconnection resources.
NML descriptions can include preplaced, or relatively placed, components/objects
to ensure that a specific object is assigned to a specific physical resource in the array.
NML descriptions are mapped and placed and routed by the xmap tool, responsible
for satisfying timing constraints and balancing execution path delays imposed by
the compiler. Figure 3.9 depicts a segment of NML generated by the XPP compiler.

3.2.5 Placement and Routing

It is common to both fine- and coarse-grained reconfigurable architectures to in-
clude a step of placement and routing (P&R) as the last step of a compilation and
synthesis flow. This step takes a description of the configurable elements and their
interconnections, and maps them to the physical hardware resources of the target re-
configurable architecture. After this placement and routing step, the tool generates
a bit-stream specifying the configurations of each of the reconfigurable elements of
the device. When loaded and programmed onto the reconfigurable device, this bit-
stream will allow the device to implement the application-specific architecture. De-
pending on the granularity of the target reconfigurable architecture, the P&R process
can be very time-consuming as it needs to map and interconnect each logic node to
a physical node or configurable element in the target reconfigurable fabric. Due to

50 3 Compilation and Synthesis Flows

MODULE PITAGORAS {
OBJ INTRAMS: IRAM @ $1,80 {
RD =N4.X

}
OBJ INTRAME: IRAM @ $1,81 {
RD = N4.X

}
OBJ INTRAM7: IRAM @ $1,82 {

}
OBJ N4: CNT_UP {
STEP = Start.U EOR N29.R
B=!511
A=0
A=N25.X

}
OBJ N13: MUL {
B = INTRAM5.0UT
A =INTRAMS5.0UT
}

DELAY_CONSTRAINT(N21.R->CMPor0.IN == 0)

Fig. 3.9 A segment of NML code generated by the XPP-VC compiler

its inherent algorithmic complexity, most P&R tools resort to simulated annealing
techniques [334] for the specific placement step, a proven robust approach for arbi-
trary designs [39].

Although it is common for compilation flow to carry out the steps of operation
scheduling and placement and routing independently, there are, however, signifi-
cant combined approaches. This is the case of the modulo scheduling technique
based on congestion negotiation and simulated annealing. This approach is used by
the DRESC compiler to map loop kernels to the ADRES coarse-grained architec-
ture [207]. Another use of the module scheduling technique for mapping loops onto
coarse-grained reconfigurable architectures is referred to as modulo graph embed-
ding [240], and is based on a technique to map a guest graph into a host graph.

An alternative approach to compile-time placement and routing techniques, sel-
dom explored in the context of reconfigurable architectures, is the use of hardware-
assisted dynamic, run-time approaches [91, 335]. Generic run-time techniques can
leverage placements in previous designs and/or rely on expensive first placement
and routing of a computation amortizing these early costs in subsequent executions
of the same computation. As with dynamic approaches in other compilation do-
mains, run-time placement and routing techniques tend to sacrifice resource usage
for speed, requiring in the case of the use of hardware-assisted techniques, addi-
tional specific hardware resources. As such, this dynamic P&R approach has not
been adopted in an industry where device occupancy and resource use is a metric of
great importance for end customers.

3.3 Tllustrative Example 51

3.3 Illustrative Example

We now illustrate the various phases of the generic compilation flow described in
Fig. 3.1 when mapping a computation specified using the popular C programming
language to a reconfigurable architecture. The computation is translated to a be-
havioral algorithmic VHDL description or to a behavioral RTL-VHDL description
ready for high-level synthesis or for RTL/logic synthesis, respectively. We opted
for this particular example to show a translation from the C source code to an al-
gorithmic VHDL description, highlighting the specific construct that resulted from
the application of high-level compiler transformations. In this example, we target a
generic FPGA device and omit for simplicity the output results regarding the actual
synthesis process using commercial synthesis tools.

3.3.1 High-Level Source Code Example

The input computation for our example is depicted in Fig.3.10 and is inspired in
common image processing sliding-window kernels such as the ones used in edge-
detection algorithms. The code is structured as an outer-loop in the body of which
there are two loop constructs, respectively, loop 1 and loop 2. The loops ma-
nipulate double-precision array variables A, B, and C and integer array variables D
and E. The first loop computes the average of the elements of array A in a 2-by-2
window over consecutive rows and columns of the array (statements s11 to s13)

Loop O: for(i = 0; i < N; i++) {

Loop 1: for(j = 0; j < N; j++) {
S11: st =A[i]{] + Alil+1]

#define DIM 16 S12: s2 = A[i+1][j] + Ali+1][+1];
#defineN DIM-2 S13: u=(s1+s2)/4.0;
S14: B[l =u;
double A[DIM][DIM]; S15: if(u > threshold) {
double B[DIM][DIM; D[j] = D[j] + 1;
double C[DIM];
int D[DIM]; }

int E[DIM][DIM];
Loop 2: for(j = 0; j < N; j++) {

double s; S21: BIill] = B[] * CIil;
double s2; S22 if(D[j] != 0) {
double threshold; E[i][] = 1;

Yelse {

E[ill] = 0;
}
}
}

Fig. 3.10 Sample source C code

52 3 Compilation and Synthesis Flows

and saves the resulting values in array B (statement s14). It also records how many
of these averages are numerically larger than an input threshold value (statement
s15). The second loop, 1oop 2, scales the array B elements by the values in array
C and uses the values of the D array accumulated in 1oop 1 to indicate which of
the columns of the two-dimensional B array has at least one value larger than the
given threshold. This indication is recorded by the binary values 0/1 in the two-
dimensional E integer array.

3.3.2 Data-Flow Representation

The compiler translates the C source code constructs and extracts data and control
dependences between the various statements. Its internal representation can be ab-
stracted as a sequence of data flows whose semantics is described by the sequence of
basic instructions represented internally as Abstract-Syntax-Tree (AST) constructs
or Data-Flow Graphs (DFGs). Figure 3.11 depicts a graphical representation of these
data flows highlighting the flow of data between operation constructs such as adders
and multipliers and indicating the source array variables for their inputs. In dashed
boxes we indicate the statements in the C source code corresponding to each data
flow. This representation reveals that, at the data-flow representation level, a possi-
ble implementation for the if-then construct in statement s15 uses a multiplexer to

Zero
Comparator

Fig. 3.11 Data flow and data dependences for sample computation

3.3 Tllustrative Example 53

select if an element of the D array is updated using its previous value, thus resulting
in a no-operation, or using the previous value incremented by 1. A similar represen-
tation is depicted for statement s22.

The compiler next determines an execution scheme for each of the loop con-
structs and/or for the overall computation. This scheduling depends on the available
resources for the hardware units that will be responsible for carrying out the indi-
vidual data-flow operations depicted in Fig.3.11. The compiler must balance the
existence of functional resources with the layout of the array data between the avail-
able storage resources and derive, at a higher level of abstraction, an execution and
synchronization scheme before generation of the VHDL that once synthesized will
produce a hardware implementation.

3.3.3 Computation-Oriented Mapping and Scheduling

When defining the overall execution scheme for the computation in the two loops,
loop 1 and loop 2, the compiler can exploit several alternatives. Figure 3.12
depicts four possible execution alternatives exploiting task-level and loop-level
pipelining, indicating symbolically the execution of the C source code statements
and their most significant data dependences. We assume for the sake of this illustra-
tion that the underlying hardware architectures consist of two FUs (FU1 and FU2)
that execute the statements for each of the two loops.

In Fig. 3.12a we depict the schedule that would result should the compiler wish to
explore task level pipelining. Here the compiler assigns the statements in 1oop 1
to task T1 and the statements in 1oop 2 to task T2. It would then assign T1 to
FU1 and T2 to FU2. In this scheduling scheme both statements of each task execute
sequentially without any loop pipelining. Figure 3.12b depicts the execution that
would result by exploiting loop pipelining for each individual task while still exe-
cuting the two tasks sequentially. At the top of this figure we depict all statements
corresponding to tasks T1 or loop 1 executing in pipelined fashion with the as-
sumption that each pipelined stage (at this level still abstract) is responsible for the
execution of all the operations in each statement.

In Fig. 3.12c we depict a combined scenario of task- and loop-pipelining execu-
tion. Here the data dependences between the statements S14 in loop 1 and S21
in loop 2 prevent loop 2 to be executed as quickly as would otherwise be pos-
sible. This is an important aspect as the analysis of dependences allows the compiler
to evaluate the profitability of resource assignments. In this case, and rather than at-
tempting to speed up the execution of the statements in Loop 2, the compiler could
opt for a slower hardware implementation, possibly without pipelined execution to
match the execution rate of the statements in loop 1.

Another scenario, illustrated in Fig.3.12d, corresponds to the case where the
available hardware resources are not enough to implement in a single partition
all the computations corresponding to the statements S11 through S15. In this
scenario the compiler is forced to split Loop 1 into two loops, say loop la

54 3 Compilation and Synthesis Flows
FU1 FU2 FU1 FU 2
S11(1) S11(1)
s12(1) si2() | S11@)
S13(1) o S13(1) | si2()
s1a(1) E s1a() | S132)
S15(1) < S15(1) | S14(2)
loop control §21(1) 5 loop control | S15(2) S21(1)
s11(2) S22(1) § loop control| s22(1) 521(2)
[} S$12(2) loop control w e loop control| S22(2)
kS 513(2) S11(N) Toop control
'; S14(2) S12(N) \
o S15(2) S13(N) \
§ Toop control 522(2) S14(N) \
9 R S21(2) S15(N) N
u ' Toop control 1o0p control S21(N)
! S22(N)
S11(N) . Toop control
S12(N) 1
ST3(N) :
S14(N) '
S15(N)
Toop control S21(N)
S22(N)
Toop control
(a) Task-level Pipelining (c) Task- and Loop-level Pipelining
FU1 FU1 FU2
Sua S11(1)
Sizn) | S1e) s12(1) | S11)
S13(1) | S12(2)
S13(1) | S12(2)
S14(1) | S13(2)
S1a(1) | S13(2)
S15(1) | S14(2)
oy o) loop control| S14(2)
Eom o Ny =
N N loop control| —$521(2) |
S0 ST1(N) Toop control]
S12(N) e St2(N) \
£ S13(N) \
© ST3(N) = \
c S14(N)
E Sum) £ loop control \
L S15(N) 3 2)
5 o s 2 @
L 8| =
9]) loop control| _ S15(2)
x s22(1) | S21(2) —
e ~o loop control| $22(2)
N S15(N) loop control
—
S22(N) S22

(d) Task- and Loop-level Pipelining with Temporal Partitioning

(b) Loop-level Pipelining for the first loop. Partitions {S11 — S14} and {S15} for

loop L1 and {S21} and {S22] for loop L2. Each partition
is executed in pipelined mode.

Fig. 3.12 Task- and loop-level scheduling schemes for example computation

and loop 1b, where loop la retains the statements S11 through S14 and
loop 1b consists of the statement S15. This partition transformation, depicted
in Fig. 3.13, now requires the compiler to perform another data-oriented transfor-
mation called array expansion to promote the scalar variable u from a scalar to a
four-dimensional array variable. At each iteration of Loop 1a, the jth position of
u records the value computed in that iteration of the original loop which is then used
on the same iteration of 1loop 1b.

3.3 Tllustrative Example 55
Loop O: for(i = 0; i < N; i++) {

Loop 1b: for(j = 0; j < N; j++) {

s11: s1 = Ali]{] + Ali][i+1]
. $12: s2 = Ali+1][j] + Ali+1][+1];

#def!ne DIM 16 s13: tmp = (s1 + s2) /4.0;
#defineN DIM-2 ufj] = tmp;

s14: B[i][j] =tmp;
double A[DIM][DIM]; }
double B[DIM][DIM];
double C[DIM]; Loop 1b: for(j = 0; j < N; j++) {
int D[DIM]; s15: if(u[j] > threshold) {
int E[DIM][DIM]; D[j] = D[j] + 1;
double u[DIM]; } }
double s1; Loop 2: for(j=0; j < N; j++) {
double s2; s21: BIil[i] = B[ili] * CIil;
double tmp; $22: if(D[j] != 0) {
double threshold; E[i][j] = 1;

}else {
E[illi] = 0;
}
}
}

Fig. 3.13 Using loop fission and array expansion to support temporal partitioning

3.3.4 Data-Oriented Mapping and Transformations

We now turn our attention to data-oriented transformations and mapping steps,
namely the mapping of array variables to RAM modules and data reuse in regis-
ters. For brevity we focus on the mapping of arrays A, B, and D to RAM modules
for the pipelined execution of 1oop 1. We assume that memory accesses to RAM
modules can be pipelined with an initiation interval of one clock cycle and exhibit an
access latency of three clock cycles. For simplicity, we assume nonpipelined arith-
metic operators such as adders and subtracters with a latency of four clock cycles.
A division operation by a power-of-two (implemented as a shift-right operation) and
an increment operation, even for 32-bit values, both execute in a single clock cycle.
These latencies are for illustrative purposes only and do not represent any specific
target architecture.

Figure 3.14a depicts a schedule for a single iteration of the Loop 1 where all
arrays A, B, and D were mapped to the same RAM 0 module. The shaded bars at the
bottom of the schedule depict the intervals of activity for the adder/subtracter unit

56 3 Compilation and Synthesis Flows

Adder/Sub |
RAM 0

(b)

Adder/Sub _
RAMO |] '

RAM 1 |

0 3 6 9 12 15 18 21 24 27

Fig. 3.14 Hardware scheduling under different array to memory mapping choices considering
memory pipelined accesses and a single non-pipelined adder/sub unit: (a) Schedule for all data
mapped to the same RAM 0 module; (b) Schedule for array A mapped to RAM 0 and arrays B and
D mapped to RAM 1

and the RAM 0 module.” These activity bars highlight that the schedule is limited
by the dependences of the read/write RAM accesses and not by the contention at the
adder/subtracter unit. The result is a schedule 28 clock cycles long which cannot be
pipelined.

The schedule in Fig. 3.14b refers to a hardware implementation with two RAM
modules. Here the arrays were mapped as follows: A to RAM 0 and B and D to

2 Here the subtracter is used to implement the comparison operation between the variables u and
threshold.

3.3 TIllustrative Example 57

RAM 1. The latency of a single loop iteration is still 28 clock cycles, but now it
is possible to overlap the execution of consecutive loop iterations. The initiation
interval is now 17 clock cycles and the limiting factor is the single adder/subtracter
unit as revealed by the collision of the activity bars corresponding to two iteration
executions (a light and a dark grey bar sets).

We now explore two additional hardware implementations mapping the array D
to discrete registers. As depicted in Fig. 3.15a the latency of the execution of a single

(a)
Adder/Sub | 1
RAM 0 |]
l l l l l l l ' l l l
T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27
(b)
Adder/Sub § I
RAM 0 | I
RAM 1 i] :

! ! ! ! ! ! ! ! ! !
I I I I I I I I I I
0 3 6 9 12 15 18 21 24 27

Fig. 3.15 Hardware scheduling under different array to memory and registers mapping choices
considering memory pipelined accesses and a single non-pipelined adder/sub unit: (a) Schedule
for arrays A and B mapped to RAM 0 and array D mapped to registers; (b) Schedule for array A
mapped to RAM 0, array B mapped to RAM 1 and array D mapped to registers

58 3 Compilation and Synthesis Flows

iteration is reduced to 22 clock cycles as the read and write operations for array D
have been incorporated as part of the increment operations directly using registers.
Still, and because both arrays A and B are mapped to the same RAM 0 module, the
initiation interval is 20 clock cycles as the last write operation on RAM 0 completes
at that cycle. To alleviate this contention we augment the hardware implementation
with a second RAM and map the array variables A and B to two RAMs. The re-
sulting execution schedule is depicted in Fig. 3.15b. The latency of a single iteration
execution is still 22 clock cycles but the initiation interval has been reduced to 17
clock cycles, now only limited by the existence of a single adder/subtracter unit.

The variety of the implementations illustrated above gives a glimpse of the com-
plexity of an overall compilation approach in the presence of multiple loops and
multiple arrays and RAM modules. In the four architectures whose schedules are
depicted in Figs. 3.14 and 3.15 there are a range of choices for the number of RAM
modules to be considered and an even larger number of possible array mappings.
Each design choice means exploring a trade-off between execution time and hard-
ware resources. Furthermore, as the examples revealed, in some cases the schedule
exposes the bottleneck in the execution of the computation in terms of which re-
sources limit the ability of the compiler to pipeline the execution of a loop. For
instance, when all arrays A, B, and D were mapped to the same single-port RAM,
even with pipelined accesses, this mapping decision was the limiting factor (see
Fig.3.14a). In this scenario, using more resources, e.g., two adder units, would not
lead to any performance improvement thus wasting hardware resources. Conversely,
when arrays A and B were mapped to distinct RAMs (see Fig. 3.14b and d) the lim-
iting factor was the single adder/subtracter unit. In this scenario adding more RAM
modules or increasing the number of ports would not improve the performance.

These hardware implementations corresponding to available compiler choices
are summarized in Table 3.1 for the execution of the 1oop 1 in the code in
Fig.3.13. For each hardware implementation we present the hardware resources
they require and the key pipelined execution metrics they exhibit, in terms of num-
ber of clock cycles for the pipeline latency and initiation interval.

3.3.5 Translation to Hardware

The translation of a computation to a hardware description language such as VHDL
is commonly done from the compiler intermediate representation (IR). This transla-
tion can be done on a statement by statement basis (including loop constructs) after
the compiler has selected an overall data and computation mapping strategy.
Irrespective of the translation approach, the compiler may leverage the capabili-
ties of high-level synthesis tools to implicitly define the desired hardware implemen-
tations. In this approach, the compiler makes no effort to define the specifics of the
architecture by not explicitly defining the structure of the control unit and the data-
path. Instead, it specifies a set of hardware resources or timing constraints that will
help the synthesis tools to define an appropriate hardware design that meets those

3.4 Reconfigurable Computing Issues and Their Impact on Compilation 59

Table 3.1 Relative performance of hardware implementations for 1oop 1 for several data map-
ping choices

Storage resources Functional resources Pipelined execution metrics
Design Initiation Total number
RAM mapping Registers interval Latency | Iterations | clock cycles
RAM 0 sl (8 bytes) 1 64-bit adder/sub 28 28 16 448
1 A (2048 bytes) s2 (8 bytes) 1 Divisor by 4
B (2048bytes) u (128 bytes) 1 32-bit incrementer
D (64 bytes) Threshold (8 bytes)
RAM 0 sl (8 bytes) . . 17 28 16 283
R A (2048 bytes) s2 1 2(; Eytes; } 6D4i-vbinst0 ?(L(;ez/sub
u (ytes PR
RAM 1 Threshold (8 bytes) | | 32°bit incrementer
B (2048 bytes)
D (64 bytes)
RAM 0 sl (8 bytes) 5 20 22 16 322
A (2048 bytes) 2 (8 bytes) } %‘ﬁj};ﬁ;‘i‘;ﬁ:{sub
3 B (2048 bytes) u (128 bytes) 1 32-bit incrementer
Threshold (8 bytes)
D (64 bytes)|
RAM 0 sl (8 bytes)| | 64-bit adder/sub 17 2 16 277
. A (2048 bytes) s2 (12(2 l‘;ytes; 1 Divisor by 4
u ytes _bit incr
RAM 1 Threshold (8 bytes) | | 22" 0it inerementer
B (2048 bytes) D (64 bytes)

criteria. In some cases, the compiler can also be very specific about the number or
type of operator implementations to be used by high-level synthesis thus, implicitly,
controlling the final architecture the synthesis generates. The specifics of the actual
synthesized architecture are totally hidden from the compiler and implicitly defined
by architectural constraints imposed to the synthesis tools. When targeting an FPGA
and after high-level synthesis, RTL/logic synthesis and placement and routing, the
resulting net-list specification is translated to a bit-stream.

In Fig.3.16 we depict an algorithmic VHDL description of the 1oop 1 com-
putation in the example C code in Fig. 3.4. In this description, arrays A and B are
mapped to distinct RAMs, as highlighted as part of the VHDL description, and ar-
ray D is mapped to registers. For brevity we have omitted the VHDL constructs for
the initialization of the array variables. Notice also the linearization of multidimen-
sional access functions and the registers declarations that support the mapping of
array D.

3.4 Reconfigurable Computing Issues and Their Impact
on Compilation

The flexibility and inherent spatial concurrency allowed by reconfigurable architec-
tures exacerbate the complexity of compilation and synthesis flows for these archi-
tectures. We now outline three key aspects that contribute to this complexity and that
are directly related to the three phases of the classic compilation flow, respectively,
the front-end, the middle-end, and the back-end.

60 3 Compilation and Synthesis Flows

ARCHITECTURE behavioral OF ExampleCode IS
BEGIN

-- reset_loop: omitted

-- init_loop: omitted

main_proc: PROCESS

SUBTYPE resource IS integer;
ATTRIBUTE map_to_module : string;
ATTRIBUTE variables : string;
ATTRIBUTE packing_mode : string;
ATTRIBUTE external memory : boolean;

VARIABLE sl: double_type;
VARIABLE s2: double_type;
VARIABLE u: double_type;
VARIABLE threshold: double_type;

SUBTYPE int_data_element IS signed(31 DOWNTO 0);
TYPE int ram_type IS ARRAY (integer RANGE <>) OF int_data_element;
TYPE int_array_type IS ARRAY (integer RANGE <>) OF int_data_element;

SUBTYPE double data_element IS double_type;
TYPE double_ram_type IS ARRAY (integer RANGE <>) OF double_data_element;
TYPE double_array_type IS ARRAY (integer RANGE <>) OF double_data_element;

VARIABLE ram_A: double_ram_type(0 TO 255);
VARIABLE ram_B: double _ram_type(0 TO 255);
VARIABLE array D : int_ram_type(0 TO 15);

constant RAM_0 : resource := 0;

attribute variables of RAM_0: constant is "ram_A";

attribute map_to_module of RAM_0: constant is "singleport_ram_array";
attribute packing_mode of RAM_0: constant is "compact";

attribute external_memory of RAM_0: constant is FALSE;

constant RAM_1: resource := 1;

attribute variables of RAM_1: constant is "ram_B";

attribute map_to_module of RAM_1: constant is "singleport_ram_array";
attribute packing_mode of RAM_1: constant is "compact";

attribute external_memory of RAM_1: constant is FALSE;

BEGIN
FOR 1IN 0 TO 13 LOOP -- pragma dont_unroll

-- Loop 1

FORjINOTO 13 LOOP -- pragma dont_unroll
sl :=ram_A(i*16+j) + ram_A(i*16+j+1);
s2 :=ram_A(i*16+16+j) + ram_A(i*16+16+j+1);
u:=(sl +s2)/4.0;
ram_B(i*164)) :==u;
IF (u > threshold) THEN

array_D(j) := array_D(j) + 1;

END IF;

END LOOP;

END LOOP;
END PROCESS;
END behavioral;

Fig. 3.16 Algorithmic VHDL description for 1oop 1 in example code

3.4 Reconfigurable Computing Issues and Their Impact on Compilation 61

3.4.1 Programming Languages and Execution Models

It is widely believed that the major barrier for adoption of reconfigurable computing
technology is the lack of adequate programming systems that offer a level of ab-
straction higher than currently provided by available HDLs [24]. Tools supporting
high-level programming specifications would tremendously accelerate the develop-
ment cycle of applications for reconfigurable systems and facilitate the migration
of already developed algorithms to these systems, a key aspect for their widespread
use and acceptance.

The main obstacle in offering a high-level programming abstraction, such as the
imperative programming model of widely popular languages (e.g., C and Java), lies
in the semantic gap between this imperative model and the explicitly concurrent
models used to program hardware devices. Common hardware description lan-
guages such as VHDL or Verilog use an execution model based on Communicating
Sequential Processes (CSP) [155] and thus far detached from the imperative models.

This semantic gap prompted the development of a wide range of approaches from
the perspective of programming models. Theses approaches cover a wide spectrum
of solutions, ranging from the easier approach where the input language already of-
fers a concurrency execution model close to the hardware CSP model to the harder
approach of automatic uncovering of concurrency from traditional imperative lan-
guages. Compilation of programs from the imperative paradigm to hardware has
therefore to bridge this semantic gap by automatically extracting as much concur-
rency as possible. A popular alternative approach is to rely on library implementa-
tions where the notions of concurrent execution have been crystallized by library
developers and openly publicized in application programmer interfaces (APIs).

The extraction of concurrency has been a long-standing and notoriously hard
problem in the academic compiler and parallel computing communities. Constructs
such as pointer manipulation in imperative languages, such as C or C++-, hinder
static analyses techniques that hamper a significant number of program transfor-
mations in the compilation and synthesis processes [276]. Compilation support for
object-oriented mechanisms and dynamic data structures (e.g., memory allocation
of linked lists) also requires advanced compiler analyses in the context of hardware
synthesis [167,249]. Alternative imperative execution models, such as languages
with explicit support for data streaming (e.g., the Streams-C language [127]), alle-
viate some of the data disambiguation problems and substantially improve the ef-
fectiveness of the mapping to reconfigurable systems as they implicitly define con-
currently execution processes. Intra-process concurrency, however, is still limited
by the ability of the compiler to uncover concurrency from sequential statements.

Orthogonal to the general-purpose language efforts, other authors have devel-
oped their own target-specific languages. The RaPiD-C [84] and DIL [55] languages
were developed specifically for pipelined-centered execution models supported by
specific target architectures. While these languages have allowed programmers to
close the semantic gap between high-level programming abstractions and the low-
level implementation details, we strongly believe that they will ultimately serve as

62 3 Compilation and Synthesis Flows

intermediate compilation languages a compiler tool can use when mapping higher
level abstraction languages to these reconfigurable architectures.

Other research efforts have focused on the definition of languages with
application-specific or domain-specific constructs explicitly exposing in some
instances the computation concurrency. As an example, researchers developed the
single-assignment SA-C language [44] geared toward image processing applica-
tions. SA-C has a number of attributes that facilitate its translation to hardware,
namely, custom bit-width numerical representations, lack of pointer references,
reduction operations with associative and commutative operators and loops with
explicit index variables and window operators. The language semantic effectively
relaxes the order in which imperative operations can be carried out and allows the
compiler to use a set of predefined library components to implement them very
efficiently. Other languages have opted for explicit mechanisms for specifying
concurrency. In this class we see a wealth of efforts ranging from languages that
expose concurrency at the operation-level (e.g., Handel-C [235]), task-level (e.g.,
Mitrion-C [217]), or thread-level (e.g., Java threads [310]).

The indisputable popularity of MATLAB [307], as a domain-specific language
for image/signal processing and control applications, made it a language of choice
when mapping to hardware computations in these domains. The matrix-based data
model makes it very amenable to compiler analyses, in particular array-based data
dependence techniques. However, the lack of strong types, a very flexible lan-
guage feature, requires that effective compilation must rely heavily on type and
shape inference (e.g., [141]), potentially limiting the applicability of more tradi-
tional analyses.

Lastly, there have also been compilation efforts using graphical programming
environments such as the Cantata environment [229] and the Viva language [293].
Essentially, these graphical systems allow the concurrency to be exposed at the task
level and are thus similar in spirit to task-based concurrent descriptions offered by
CSP-like languages.

3.4.2 Intermediate Representations

Given the inherently parallel nature of reconfigurable architectures where multiple
threads of control can operate concurrently over distinct data items, the intermedi-
ate representation a compiler uses for such architectures should explicitly represent
this concurrency. Further, the intermediate representation should enable, rather than
hamper, transformations that can take advantage of specific features of the target
reconfigurable architecture.

An intermediate representation should also explicitly represent control and data
dependences as in the traditional CDFG [114]. This representation uses the control-
flow structure of the input computation representing each basic block with its DFG.
Figure 3.17 illustrates part of a CDFG for the computation in 1oop 2 of the exam-
ple code in Fig. 3.10.

3.4 Reconfigurable Computing Issues and Their Impact on Compilation 63

I J Il !

BIG || cii DI
: BIII=BIIIICL; ,

C_ | cond=Djjj1=0: NEQ

‘ N . BIillj] cond

E[i][i]=1; I][J
1_

Fig. 3.17 Example of a CDFG

In this representation, however, the compiler is unable to exploit concurrency op-
portunities across multiple basic blocks. The hyperblock representation [200], mit-
igates this issue by aggregating a set of contiguous basic blocks with a single point
of entry and possibly multiple exit points. This aggregation increases the amount of
available concurrency in the representation [61] by enlarging the number of opera-
tions considered at the same time by a fine-grained scheduler [192].

A variant of the data-flow graph representation that captures more context
nodes, adopted in the context of high-level synthesis when targeting ASICs (see,
e.g. [140]), is the Hierarchical Task Graph (HTG) [120]. The HTG can represent ef-
ficiently the program structure in a hierarchical fashion and can explicitly represent
functional parallelism exposed by an imperative programming language. The HTG
combined with a global DFG, extended with program decision logic [22], has been
argued to be an efficient intermediate model to represent parallelism at various lev-
els, when exploiting speculative execution and multiple flows of control [222]. By
exposing multiple flows of control it is possible to combine data-dependence graph
(DDG) information and control-dependence graph (CDG) [85] information.

Also common in the co-synthesis community [212] is the use of task graph
representations. An example representation is the Unified Specification Model
(USM) [231], allowing the representation of task-level and operation-level control
and data flow in a hierarchical fashion. Tasks are described at algorithmic level
using a hardware description language. The USM graph-based representation ex-
plicitly captures data dependences between tasks and data sets (scalars and array
sections) thus allowing compilers to explicitly manage the assignment of data sets
to memories.

64 3 Compilation and Synthesis Flows

Regardless of the intermediate representation that exposes the available concur-
rency of the input program specification, still there is no clear, generic and efficient,
migration path from common imperative programming languages to hardware-
oriented representations as this mapping fundamentally relies on the ability of a
compilation tool to uncover the data dependences in the input computation. In this
context, languages based on the CSP abstractions are naturally more amenable to be
mapped to hardware-oriented representations than state-full imperative languages
such as C or C++.

3.4.3 Target Reconfigurable Architecture Features

As expected, the characteristics of the target reconfigurable architectures greatly
affect the complexity of the compilation and synthesis process as it is apparent from
the diversity of architectures described in Chap. 2. Furthermore, the compilation
issues are exacerbated by the fact that these architectures can emulate, albeit at an
appreciable performance loss, virtually any parallel architecture.

Besides the common aspects relating to address space and memory organization
in parallel architectures (data partitioning and nonuniform accesses) alongside with
the execution of control and synchronization, such as Single-Program-Multiple-
Data (SPMD) or Single-Instruction-Multiple-Data (SIMD), we now highlight three
aspects that are unique to reconfigurable architectures which directly impact the
compilation and synthesis flow, namely:

e Configurable Storage Structures: Some architectures allow for their storage
resources to be configured in terms of RAM modules with a variety of choices of
capacity and data widths. These architectures can even offer a set of additional
storage resources as discrete registers. Commonly, there is no notion of a uni-
fied address space and in the presence of data replication there is no provision
for hardware-supported data consistency. These features place the burden of data
mapping and management on the compiler when using data-oriented transforma-
tions such as caching (scalar replacement for array variables) or replication.

e Configurable Functional Units: Some architectures allow their execution units
to be configured either by extending their ISA (e.g., Xtensa [134]) or by allow-
ing the various functional elements to be customized for a specific application,
thereby creating architectures that are truly heterogeneous. This heterogeneity
can be visible as macrolevel FUs inserted in a flexible reconfigurable fabric as is
the case with contemporary FPGAs [342]. This heterogeneity also creates an ad-
ditional level of complexity as the execution models can now be distinct between
FUs. For instance, it is possible to combine in the same architecture pipelined
or systolic execution models [204] or VLIW [110] with thread-like execution. In
this setting, the compiler must define a suitable communication and synchroniza-
tion scheme to ensure data and control are preserved across execution domains,
commonly achieved via hardware hand-shaking protocols or buffer synchroniza-
tion using FIFO policies.

3.5 Summary 65

o Trading Storage and Computational Resources: Possibly the most notori-
ous aspect of some reconfigurable architectures is their ability to trade stor-
age resources for computing resources. This is the case with FPGAs where the
Configurable-Logic-Blocks (CLBs) can be used as building blocks of either dis-
crete registers, shift-registers, small memories, or combinatorial logic functions.

A possible approach to deal with the extreme flexibility, in terms of storage and
computing resources reconfigurable architectures offer, is for compilers to engage
in an exploration of alternative designs or design-space exploration (DSE) [96] cre-
ated by the many code and mapping transformations at their disposal. The plethora
of transformations, the wide range of architectural options, and the number of trans-
formations and their interaction lead to huge design spaces. The various transfor-
mations, however, interact in nontrivial fashion exposing low-level issues such as
contention for shared resources or bandwidth contention leading to possible execu-
tion bottlenecks.

To overcome the sheer dimension of these design-space researchers have devel-
oped various execution time performance modeling [242, 290] and resources esti-
mation approaches [40, 180]. Using these modeling techniques, compilers can gage
the pressure on resources for FUs and storage structures created by each sequence
of transformations and thus select the transformations that lead to feasible and prof-
itable hardware implementations. Although not completely accurate, some of these
efforts have shown that even in the presence of inaccurate estimates a compiler can
still make correct decisions about which transformations to use [288]. These early
experiences suggest that indeed compilers must and can rely on simple, but effective
modeling and estimation approaches to effectively explore a wide range of design
options that would otherwise simply be unfeasible to explore.

3.5 Summary

Typical compilation flows for reconfigurable computing architectures translate the
input computations (in a program) into data-path and control structures which define
a computing engine specific to the input computations. Depending on the granularity
of the target reconfigurable architecture, different back-end phases might be needed.

When targeting fine-grained reconfigurable architectures, traditional high-level
synthesis and RTL/logic synthesis steps are needed. When targeting coarse-grained
reconfigurable architectures, usually consisting of arrays of ALUs or other more
complex PEs, the compiler has to create the computing engine, possible based also
in data-path and control structures, using the PEs and interconnection topologies
present in those architectures. In either these cases, the compiler has ample potential
for optimizations, from specialization of data and operations to different pipelined
execution forms.

Chapter 4
Code Transformations

In this chapter we describe various code transformations for reconfigurable archi-
tectures. We focus on transformations for which the ability of the architectures to
provide custom/specialized hardware implementations increases their effectiveness
in reducing, for example, execution time or hardware resource use.

We distinguish between very low-level code transformations which can exploit
the fine-grained customization of reconfigurable architectures such as FPGAs, to
coarse-grained instruction-level and loop-level transformations that are suitable
when targeting fine- or coarse-grained reconfigurable architectures, such as the
ADRES [206] and the XPP [31] architectures. While many of these transforma-
tions are not specific to reconfigurable architectures, they expose concurrency and
data locality that can be exploited at various levels. For example, data reuse analy-
sis and scalar replacement allow a compiler to define specific storage structures in
number and capacity to save data that are reused throughout computations, either in
registers or in internal RAM blocks. Loop distribution and loop unrolling allow a
compiler to exploit both task- and instruction-level parallelism. An effective com-
piler for reconfigurable architectures must, therefore, uncover and leverage the great
diversity of the interactions between these transformations to match the opportuni-
ties for customization enabled by the underlying architecture.

4.1 Bit-Level Transformations

We begin with three common bit-level transformations, namely, bit-width narrow-
ing, bit-optimizations, and conversion between floating-point and fixed-point data
formats. Overall, these bit-level transformations aim at exposing to the implemen-
tation the amount of bit-level resources strictly needed to carry out the arithmetic
or logical operations at hand. While these transformations are also applicable to
coarse-grained reconfigurable architectures, they are more suitable when target-
ing specialized functional units (FUs) in fine-grained reconfigurable architectures,
as these architectures can leverage the bit-level information through customization

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 67
DOI 10.1007/978-0-387-09671-1_4,
© Springer Science+Business Media LLC 2009

68 4 Code Transformations

and specialization to deliver implementations with substantially fewer hardware re-
sources than direct and naive implementations. In many cases, these implementa-
tions may exhibit faster clock rates as the critical path of the generated data-paths is
shortened.

4.1.1 Bit-Width Narrowing

In many programs, the declared precision and range of the numeric data types used
are overly-defined. This over-definition occurs when the bit-widths of the data types
are much larger than the bit-widths required to store the data for the observed values
during the execution of the computations [71,295].

An illustrative example of this over-definition occurs by direct implementation
in hardware of the arithmetic and logic operations used in loop control variables
as depicted in Fig. 4.1. In this example, the native 32-bit two’s complement integer
representation for the loop’s control variable i allows for a range of integer values
of [—231,231 — 1], whereas in reality only 3 bits are required to span the range of
values [0, 7].

A naive direct implementation of the controller for the execution of the loop
would use the default 32-bit adder in the hardware solution depicted in Fig.4.1b
where the (i<=7) comparison relies on a comparator. Given the information about
the range of values assumed by the variable i, a compiler could generate an hard-
ware solution using a single 3-bit unsigned adder operator instead. Figure 4.1c de-
picts an even more aggressive hardware implementation variant where the carry-out
signal (cout) of the 3-bit adder is used to indicate if the value of the variable 1 is
less than 8 resulting in an extremely compact hardware design solution.

While there are high-level programming languages that allow programmers to
explicitly define the bit-width of variables (e.g., Valen-C [161], NAPA-C [125],
DSP-C [4]), this language feature still presents a challenge to programmers. First,
some of the languages only allow for each variable a fixed bit-width to be declared

<32> <3>

_ :
for(int i=0; i<8; i++) { REG i < g REG
<32> l l <3>
} Y Y
+ LESS +

\—|:, THAN cout

<32> * <3>
It It_bar

C)) (b) ()

Fig. 4.1 Bit-width narrowing example in loop control variables: (a) original source code; (b) naive
hardware implementation; (c) aggressive hardware implementation

4.1 Bit-Level Transformations 69

for the entire program. This limitation precludes the use of distinct bit-widths in
distinct locus of the program where the requirements may clearly be different. Sec-
ond, in some cases, the definitions of bit-widths are restricted to type declarations
and not variable declarations. This forces the programmer to use a higher number
of user-defined data sets to accommodate the various bit-width requirements antic-
ipated in the program. This second aspect is exacerbated by the potential need to
have structured (e.g., nested) data types, given the increase of the number of combi-
nations of the various bit-width variants of the nested data types. Although in some
specific cases the use of declared data types and variables with predefined bit-widths
is advantageous, it may lead to poor programming practices.

An alternative approach is to rely on compiler techniques for bit-width and type
inference analyses [8]. Using these analyses, a compiler may estimate the type,
shape, and the number of required bits for representing the underlying variables
the program manipulates at all program points [143,296]. For example, in a MAT-
LAB program the compiler can determine that at specific program execution points a
given variable, e.g., mat _a is a two-dimensional array of binary values, whereas at a
distinct program point, the same symbolic name mat _a is used as a one-dimensional
double-precision vector.

Bit-width analysis relies on data-flow analyses techniques. As with any static
analysis, bit-width analysis is naturally conservative given the undecidability limita-
tions of fully static analyses. To circumvent this limitation, researchers have consid-
ered two alternative approaches to static bit-width analysis, namely, run-time profil-
ing (while still relying on an off-line analysis technique) and truly dynamic run-time
approach.

In approaches based on run-time profiling, the compiler combines static analy-
sis results with assembled run-time profiling data. The compiler relies on execution
traces to learn about the actual values being stored in each variable and the type
and results of the operators that manipulate them. With this knowledge, the com-
piler derives actual observed and/or estimated bit-widths for each variable. These
profiling-based approaches require an off-line execution of the program using test
vectors (data sets) which can be either set up by programmers or automatically gen-
erated by the compiler to attempt to cover a wide range of internal control-flow
path executions [227]. As with any profiling-based approach the validity of the re-
sults is very dependent on the relationship between the tested input data sets and
the observed program behavior in actual production runs. In addition, and to in-
crease the coverage of the observed data set, these approaches incur non-negligible
profiling costs.

In the presence of loops, a compiler, using a combination of profiling and static
analyses techniques, can generate precision adaptation strategy, where it determines
for ranges of loop iteration counts the required precision of the variables the loop
manipulates [48]. For example, for the first k iterations of the loop, the compiler
can ensure a specific required bit-width for all the variables, whereas if the loop
iteration count exceeds k, different bit-widths must be used instead. Based on the
results of such analysis, the compiler generates a sequence of configurations where
each one defines a specialized circuit, or partial changes to the previous circuit, to

70 4 Code Transformations

be loaded at specific loop iteration counts. To be practical, this approach requires
hardware support for fast dynamic reconfiguration (possibly also including partial
reconfiguration).

It is possible to envision a more radical, but expensive approach relying entirely
on dynamic, run-time techniques, i.e., a true dynamic precision management ap-
proach. In such an approach, the compiler would gather, using a static analysis,
some knowledge about types and required bit-widths, and then would postpone to
run-time the completion of key steps of the analysis. Alternatively, it could also rely
entirely on monitoring and adapting the required precision of the computations at
run-time invoking a reconfiguration whenever the precision would warrant it. Nat-
urally, this approach would have nontrivial execution time costs, not only for the
monitoring of the precision but also for reconfiguration. We are not aware of any
such approach.

As static bit-width analysis is the most commonly used, we now describe some of
its approaches reported in the literature. With respect to mapping of computations to
reconfigurable architectures, one of the first static bit-width analyses was presented
by Razdan and Smith [258], developed strictly for acyclic program constructs. More
recently Budiu et al. [56] described and evaluated a static bit-width analysis, named
BitValue analysis, that handles loops. In BitValue analysis, the compiler attempts to
determine the possible individual bit values for the binary representation of each
variable in the program. Each bit can have a definite value, either O or 1, an un-
known value, or can be represented as a “don’t care.” The authors formulate Bit-
Value analysis as a data-flow analysis problem with forward, backward, and mixing
steps. Data-flow analyses are used to propagate those possible bit values based on
propagation functions dependent on the operations being analyzed. The backward
analysis is used to propagate “don’t care” values, and the forward analysis is used to
propagate both defined and undefined values. Forward and backward analyses are
done iteratively through bit-vector representations until a fixed point is reached.

At a simple operator level, the analysis relies on specific bit setting properties of
the operations. For example, in the statement b=a<<2, and as a result of the “shift-
left” operation by 2 bits, a compiler could determine that the two least significant
bits after this shift operation are 0. Propagating this information, the compiler can
determine similar properties for other variables leading to possible simplifications
of arithmetic or logic implementations in subsequent instructions. For statements
involving more operations, the analysis is more sophisticated and requires the two
backward and forward steps as depicted in Fig. 4.2. For simplicity, we consider in
this case that all the variables are of the unsigned byte type. In the example shown
in Fig. 4.2a, the mask operation a&&0xf allows a compiler to determine by for-
ward propagation that variable d only requires 4 bits and by backward propagation
that variable a only requires 4 bits. Thus, the multiplication can be performed by
a simple 4 x 4 hardware multiplier. In the example depicted in Fig. 4.2b, the mask
operation b& & 0x £ limits the bit-width of a to 4 bits and thus allows the compiler to
derive a 4 x 8 bits hardware multiplier to calculate the value of c. Backward prop-
agation in this example can be used to derive that variable b only requires 4 bits.
These steps are illustrated graphically in Fig. 4.2, where the inputs for each operator

4.1 Bit-Level Transformations 71

b c b Oxf
XXXXUUUU XXXXUuUuu XXxxuuuu 00001111
A i > Vol i
A P
{Q)i 3) % AND / M
Y d

XXXXUUUU @ Oxf 0000uuuuy, a

---- . uuuuuuuu

(a) (b)

Fig. 4.2 Examples (a) and (b) of forward and backward bit-width information propagation con-
sidering variables of type unsigned byte. Annotations (1), (2), and (3) indicate the order in which
the steps are executed

have been annotated with bit-vector representations resulting from BitValue analy-
sis, along with the sequence of propagation of the results of this analysis. In Fig. 4.2,
u represents an unknown bit value, whereas x denotes a “don’t care” logic value.

A simpler case of bit-width analysis, referred here as bit-width propagation, con-
sists in the propagation of bit-width values through the operations in a DFG. In this
case, the propagation of bit-widths in the presence of an addition operator results in
a number of bits equal to the maximum bit-widths of the two operands plus 1 bit.
This analysis, however, does not find bit values as the BitValue analysis presented
previously.

Range propagation analysis, also known as value range analysis, is a variant of
bit-width analysis, where the compiler tracks the range of values each operand can
assume [296]. The use of value range analysis allows a compiler to derive narrower
bit-width requirements than by direct bit-width analyses, with the exception of the
bounding bits (i.e., the LSBs and the MSBs). However, range analysis does not allow
the determination of which bits in the operand’s representation can be eliminated.
To complement value range analysis, compilers can use auxiliary information, such
as the bounds in each array dimension, to infer the values of scalar variables used in
the array indexing functions, under the assumption of safe-bound array accesses.

In the presence of loop constructs, forward and backward propagation analyses
either need to use analytical models that represent the increase in the number of bits
when operations are repeated a specific number of times or need to iterate until a
fixed point is reached, which in itself is a possibly very time-consuming process.
When the loop bounds are not known at compile-time, the analysis must consider
loop upper bounds (possibly derived indirectly by array bounds) or, more conser-
vatively, does not perform bit-width narrowing and assume worst-case precision
requirements.

Table 4.1 presents illustrative examples of three static bit-width narrowing tech-
niques. The rightmost two columns of the table present the result of applying each

72

Table 4.1 Examples of bit-width narrowing techniques

4 Code Transformations

Analysi .
aysis Potential
technique
Only eliminates most
significant bits
Bit-width
propagation
Can find bit
information in every
position of the bit
BitValue representation
Only reduces on the
extremities (most
and least significant
Value bits), but can lead to
range more minimized

implementations
than the previous
two analyses

Examples (A, B, C, and D are unsigned variables)

A, B, C: 8 bits
D: 16 bits
D = ((B<<2)+(A<<3))+(C<<2);

(B<<2) = 10 bits;

(A<<3) = 11 bits;

(C<<2) = 10 bits;

(B<<2)+(A<<3) = 12 bits

(11-bit adder with carry-out)

D: (B<<2)+(A<<3)+(C<<2) = 13 bits
(12-bit adder with carry-out)

(B<<2): <uuuuuuuu00> = 10 bits

(A<<3): <uuuuuuuu000> = 11 bits

(C<<2): <uuuuuuuu00>= 10 bits
(B<<2)+(A<<3): <uuuuuuuuuu00> = 12 bits
(8-bit adder with carry-out)

D: <uuuuuuuuuuu00> = 13 bits

(10-bit adder with carry-out);

B: [255:0] = (B<<2): [1,020:0]; = 10 bits

A: [255:0] = (A<<3): [2,040:0]; = 11 bits
(B<<2)+(A<<3): [3060:0] = 12 bits

(11-bit adder with carry-out)

C: [255:0] = (C<<2): [1,020:0]; = 10 bits

D: [1,020:0]+[2,040:0]+[1,020:0]=[4,080:0] = 12
bits

(12-bit adder)

A: 8 bits

B: 6 bits

C: 5 bits

D: 16 bits
D=(A+B)+C;

A+B = 9 bits

(8-bit adder with carry-out)
D=(A+B)+C = 10 bits
(9-bit adder with carry-out)

A+B: <uuuuuuuuu> = 9 bits (8-
bit adder with carry-out)
D=(A+B)+C: <uuuuuuuuuu> =
10 bits

(9-bit adder with carry-out)

A: [255:0]
B: [63:0]
C: [27:0]

A+B: [318:0]; = 9 bits (8-bit
adder with carry-out)
D=(A+B)+C: [345:0]; = 9 bits
(8-bit adder with carry-out)

of the techniques to the simple expressions depicted in the first row of the table. As
can be seen in this example, the propagation of value ranges determines the mini-
mum number of required bits. In the case shown in last column, value range analysis
infers 9 bits for the variable D, instead of the 10 bits which would be required when
using either bit-width or the BitValue technique. Note, however, that the propaga-
tion of bit vectors can find bit positions whose values are known statically. Such
information can be used to simplify the FUs needed to perform the operations.

Although orthogonal to bit-width narrowing, bit precision information can be
used at run-time to improve performance by shortening the execution time of opera-
tions. When an FU, capable of handling operands of a specific bit-width, is presented
with operands with lower bit requirements, it can internally bypass some of its hard-
ware resources and derive a correct output result quicker [53].! These dynamic ex-
ecution techniques, however, require additional hardware resources to determine if
operands have bit-width requirements below a specific level at run-time.

4.1.2 Bit-Level Optimizations

Bit-level optimizations refer to optimizations of logic functions, possibly performed
at gate-level. In the example of program decision logic [22], a compiler may

! When presented with input operands requiring only precision in the lowest 3 bits, a 16-bit adder
can very quickly generate a valid 4-bit output result.

4.1 Bit-Level Transformations 73

cl —

— pred_stmt6é

\\\\\\

» (cOHCOC)IE /Y

c3 ——[>O—— pred_stmt6

stmt3

stTﬂ
A
stmt9

Fig. 4.3 Control-flow intensive example (based on [22])

try to simplify this logic by performing traditional boolean minimization tech-
niques typically used in logic synthesis [210]. We present in Fig.4.3 an example
inspired by a section of code of the UNIX utility we described in [22]. In this
example, the labels cO to c¢5 represent branch conditions. For this code, a com-
piler can determine, by inspecting the predicate logic for the execution of state-
ment stmt 6, as (cO+!c0cl) !c3. As the expression cO+!c0cl is equivalent
to c0+c1, the compiler can simplify (cO+!cOcl) !c3as (cO+cl) !c3.Byin-
specting the conditions used in this expression, which are c0: (32>=r4), cl:
(r4>=127),and c3: (r4!=10), a compiler may further simplify the expres-
sion (cO+cl) !c3 to !c3, given that !c3 implies cO and excludes c1. These
simplifications allow the compiler to generate an implementation for the program
decision logic with fewer logic gates and lower execution delay. These simplifi-
cations may have a different impact when targeting fine- or coarse-grained RPUs.
For example, when targeting an FPGA with basic configurable blocks consisting of
4-LUTs, i.e., lookup tables with four inputs, the predicated logic for stmt 6 will
use the same number of FPGA resources as both circuits presented in Fig. 4.3 can
be mapped to a single 4-LUT. When targeting coarse-grained RPUs, the simplifica-
tions may lead to implementations using only one FU than the five FUs required for
the nonoptimized predicate logic for stmt 6.

74 4 Code Transformations

b a
L —
uuuu
a |= b& 1; <3:1> <0> <0>
Y
a<3:1>(a<0> OR b<0>) OR
<0>
<3:0>
a

(@) (b) (c)

Fig. 4.4 A bit-level optimization example: (a) input statement; (b) naive operator translation and
bit-value analysis results; (¢) simplified implementation

int Reverse(int Word) { | Word |
int WordRev = 0;
for(int i=0; i<32; i++) {
WordRev |= (Word & 1);
WordRev << 1;
Word >> 1;

} | WordRev
return WordReyv;

}
(a) (b)

Fig. 4.5 Bit reversing (32-bit word): (a) coded C programming language; (b) optimized imple-
mentation in hardware using wires

Bit-level optimizations may also use the bit-value results, gather by bit-width re-
lated analyses described in the previous section, to simplify, or even eliminate, arith-
metic and logic operations. Figure 4.4 illustrates an example of these simplifications
considering for simplicity 4-bit data representations. The initial 4-bit & & and | | op-
erations in Fig. 4.4a can be directly translated to 4-bit logic AND and OR gates as
depicted in Fig. 4.4b. Using the information about the bit-values of the integer con-
stant 1, the compiler converts the 4-bit logic AND and OR gates to a single wire
and a 1-bit logic OR gate, respectively as depicted in Fig. 4.4c.

Bit optimizations can even allow a compiler to eliminate the hardware that,
in other case, would be associated with a given statement, as is the case of
if ((ans&0x8000)==0x8000) which can be implemented in hardware us-
ing a simple wire connected to the 15th bit of ans. Similarly, the evaluation of
predicates of the form (a<0) and (a>=0) can be performed by inspecting the
logic value of the most significant bit of a assuming the sign of the representation
identified by that bit. A more elaborate example is depicted in Fig.4.5. In this ex-
ample, and after performing loop unrolling, the compiler can use bit-value analysis
to determine that each bit in the result is a specific bit of the input word value,
leading to an implementation that only uses hardware interconnections (wires). For

4.1 Bit-Level Transformations 75

coarse-grained reconfigurable architectures, however, this reversal would have to
be accomplished by a combination of word-level routing (e.g., using 8-bit word re-
versal in the case of an 8-bit architecture), and bit-level operations such as masking
and shifts by constants.

Applying bit-width narrowing and bit-optimizations to examples with intensive
bit-manipulations, as are for example bit-masking, shift by constants or bit concate-
nation operations is likely to lead to significant improvements in size and execution
time of the resulting hardware implementations. For instance, the simplification of
the statement c=(a.b) [7, 0] in DIL [55], where b is an 8-bit variable, “.” de-
notes the concatenation operator, and square brackets represent the bit-range of an
expression, reduces it to c=b [7, 0]. The implementation of this statement only has
to connect via wires the eight least significant bits of b directly to c.?

As these last two examples illustrate, applying bit-level optimizations earlier
in the compilation flow, albeit depending critically on the ability of the compiler
to apply other transformations, is important to improve the overall hardware re-
sources and timing. A dramatic example is the bit-reversal example in Fig. 4.5. If
the compiler does not fully unroll the loop, it is forced to generate a fairly ineffec-
tive hardware implementation that would reflect the control structure of the original
computations without exploiting the embarrassingly bit-parallel interconnection na-
ture of the optimized solution.

4.1.3 Conversion from Floating- to Fixed-Point Representations

Floating-point data representation is a commonly used format to represent
real numbers in almost all computing domains. In the IEEE 754 [158] sin-
gle precision floating-point standard each floating-point value is represented as:
(4/—)1.f x 2(e*~127) where f represents the fraction (mantissa) using 23 bits
and exp represents the 8-bit exponent. The costs associated to the arithmetic op-
erations in floating-point formats, however, are much higher than using an integer
representation in terms of logic gates and timing. An alternative representation,
commonly used in digital signal/image processing algorithm implementations, are
the fixed-point data types. The fixed-point data types allow the arithmetic operations
to be done by integer operations and scaling factors implemented by shifting the
operands and/or the result of the operations.

In some cases the trade-off between precision and efficiency of computations
in fixed-point format is acceptable given the substantial reduction of the costs of
the arithmetic operations. Figure 4.6 shows the output of a function when using
floating- and fixed-point representations. We can see in this simple example the
different results achieved and the increase in the accuracy when using more bits for
the fixed-point representation.

2 This same DIL expression is equivalent to the C or Java statement c=(0xff)&
((a<<8) || ((0xff)&b)) which requires a more aggressive analysis to expose the optimized
circuit.

76 4 Code Transformations

0.8

0.6

. 0.4 cos(x)
X
= — - —1x32!
0.2}
1-x%/21[5 2]
ol 1-x%/21[6 3]
— = —1x%/2([7 4]
021 | —e— 122132 16]
-0.4 L L L L L L L Il
0O 02 04 06 08 1 12 14 16

X

Fig. 4.6 Values obtained when approximating cos(x) by the function 1 —x? /2! using floating- and
fixed-point representations. Labels [ab] represent fixed-point data types with word-length of « bits
and including b bits for the fraction part

Given that most algorithms have been developed on computers natively sup-
porting floating-point data types, porting floating-point based codes to use fixed-
point data types requires an error-prone, tedious, and time-consuming conversion
process. This floating-point to fixed-point conversion has been the focus of several
research projects that compile C programs onto DSP (digital signal processor) ar-
chitectures [1,324]. Most, if not all of the approaches reported in the literature, use
profiling and/or programmer annotations to assist the automatic phases of the con-
version. It is common that whenever the tools are unable to find a translation for a
specific variable, they prompt the user to provide additional information. Other tools
rely on profiling techniques or interpolation analyses [300].

Floating- to fixed-point conversions have also been addressed when mapping
computations to fine-grained reconfigurable architectures. Leong et al. [190] de-
scribe a conversion method based on profiling and on the minimization of a cost
function. Nayak et al. [225] describe an automatic type analysis approach divided
into two main steps. The first step seeks the minimum number of bits of the integer
part of the fixed-point representation using range propagation analysis with forward
and backward phases as described in the previous section. In the second step, the
approach searches for the minimum number of bits in the fractional part of the fixed-
point representation. It starts by using the same number of fractional bits for all the
variables and then refines the representation via an error analysis technique.

In addition to the conversion of noninteger numeric data types, compilers also en-
gage in a transformation or minimization of the hardware logic that carries out the
numeric computations. The main objective of these transformations is the reduc-
tion, or even elimination, of shift operations used in adjusting of the exponents and
mantissas. When targeting coarse-grained architectures, with or without barrel-shift

4.2 Instruction-Level Transformations 77

hardware support, the compiler can attempt to reduce the number of scaling oper-
ations. This reduction can have a great impact on the overall performance of the
implementation as a trivial translation can produce a large number of such shift
operations. In addition, elimination of shift operations is also possible when the
operands that need to be aligned (e.g., in additions) are represented with the same
number of fractional bits. When targeting fine-grained architectures and when the
amount of shifting is known at compile-time, shift operation can be implemented by
simple redirection of the bits of the fractional part of the representation.

4.1.4 Nonstandard Floating-Point Formats

It is possible to improve the performance of arithmetic operations and/or reduce
the amount of hardware resources used for specific applications by the adoption of
nonstandard floating-point formats. These formats are used for variables that require
more precision than the precision offered by fixed-point formats, but much less pre-
cision than offered by standard floating-point formats, as they only require specific
numbers of bits for exponent and mantissa representations according to specific ap-
plication accuracy requirements.

A nonstandard floating-point format is referred to as block floating-point number
representation [252] , whose key idea is to split the value of a variable between
two components. One component is defined for a set of variables as an implicit
and common exponent exp. The second component is defined for each variable by
an integer value denoted here by int. The value of each variable in this block of
variables is thus defined as int x 2(~=¢7)

Block floating-point formats can be profitably used in the context of fine- or
coarse-grained reconfigurable architectures and are an important representation
transformation when compiling DSP applications to reconfigurable architec-
tures [177].

4.2 Instruction-Level Transformations

At a coarser level of granularity in code transformations, we include many
instruction-level transformations that increase performance and/or simplify or re-
duce the hardware resources allocated for a given computation using a combination
of algebraic simplification or circuit specialization. As instructions are translated
into specific hardware operators such as adders or multipliers, the simplification or
even elimination of operations (in the absence of resource sharing) directly corre-
sponds to the elimination of hardware resources in the circuit that implements the
desired computation.

Simple algebraic transformations, common subexpression elimination, constant
folding, and constant propagation, have been extensively studied and used in the

78 4 Code Transformations

context of compilation for traditional architectures and have, often, a positive im-
pact on the generated code. Examples of such transformations include the classical
algebraic strength reduction and simplification cases such as replacing —1 X a by
—a, —(—j) by j, or 0+i by i. Other algebraic transformations, as is the example of
replacing a square operation with a multiplication (a” replaced by a x), are useful
when an architecture does not natively support the original operation.

Many of these algebraic transformations are independent of the target architec-
ture and have a positive impact both in terms of timing and used hardware resources.
We focus here on three key transformations enabled or emphasized by the flexibil-
ity of reconfigurable architectures, namely operator strength reduction, tree-height
reduction [222], and code hoisting/sinking.

4.2.1 Operator Strength Reduction

In operator strength reduction (OSR) the compiler replaces a specific operation with
a sequence of less expensive operations. Strength reduction can achieve resource
savings and reduce the delay of the operation, and is therefore well suited for com-
pilers to fine-grained reconfigurable architectures given their ability to implement
specific operations by direct manipulation of wires and the ability to customize
and/or combine operators.

A first class of strength reduction is usually applied in the context of software
compilers to induction variables [222], as is the example of replacing j=1 %2 with
j=7+2 for loops with i control variable and unit step.

A second class of strength reduction transformations contains simple bit-
manipulation operations that can be trivially implemented by changing the meaning
of the wires that carry the values of the variables, thereby eliminating altogether the
“instructions” or operators. As an illustrative example, the operation 2 X i can be
replaced by the operation i<<1 which in fine-grained reconfigurable architectures
(i.e., with support to bit-level routing) can be implemented using wire connections.
Also, the operation 3 x i can be implemented by the combination of i+ (i<<1).
Figure 4.7 depicts an illustrative implementation of the latter operation strength
reduction example.

A third class of strength reduction specializes an operation based on the value
of its operands. This is particularly relevant in the context of arithmetic operations
given the computational weight and amount of resources needed to implement these
operators. For example, when a constant of the form 2V is added to an operand,
an increment and a bit-level concatenation can be used instead of a full adder as
depicted by the particular example in Fig. 4.8, where a 32-bit operand is added to
the constant 2'°, thus only requiring a 16-bit increment unit rather than a 32-bit
adder.

Generically, integer divisions and multiplications by compile-time constants can
be transformed into sequences of shifts, additions, and subtractions [199]. Trivial
cases occur when there is a multiplication or a division of an integer operand by a

4.2 Instruction-Level Transformations 79

B 1
B
<< <N-1:0>
3 B <N-1-0> <N-2:1>'0’
Y y A
+ +
A A A
(a) (b) (c)

Fig. 4.7 OSR example: (a) implementation without OSR; (b) implementation with OSR; (¢) sim-
plified implementation

B<31:16> 1 B<15:0>
B<31:0> 2
A<31:0>
A<31:0>
(a) (b)

Fig. 4.8 Bit-level operation specialization example: (a) nonoptimized implementation; (b) imple-
mentation after specialization

power-of-two constant. For these cases, a multiplication is accomplished by a sim-
ple shift of the operand, which, in fine-grained reconfigurable architectures, requires
only a hardware implemented with wire interconnections. The nontrivial multipli-
cation cases require the use of other implementation schemes. Some authors have
proposed arithmetic operations (e.g., factorization) to deal with the multiplications
by constants, for which optimal algorithmic solutions described in the literature
have exponential time complexity [38]. An efficient scheme for transforming mul-
tiplications by constants to less costly operations uses the Canonical Signed Digit
(CSD) representation [150]. Using CSD a constant is uniquely represented with a
minimum number of symbols —1, 41, and 0 such that no two consecutive bits are
non-zero. This representation allows the use of a small number of adder/subtracter
components for multiplications, which can be further reduced by the application
of common-subexpression elimination (CSE) to the CSD representation. Table 4.2
presents three illustrative examples of the application of operator strength reduction
to the sample arithmetic operation 231 x A. The binary case refers to the direct use
of the binary representation, and corresponds to a hardware solution with the largest
number of operations, and therefore of hardware resources required. The two other

80 4 Code Transformations

Table 4.2 OSR example on integer multiplications by constants (shift operations are not included)

Operation 231 xA
Representation Binary CSD CSD+CSE
011100111 100-10100-1 Pattern: 100-1
Resources (not considering shifts) 5 adders 2 subtracters 1 adder and 1
and | adder subtracter

cases use the CSD representation without and with CSE revealing substantial reduc-
tions in the number of additions and subtractions used.

Although in much limited contexts, operator strength reduction can also be used
when dealing with floating-point operations. For example, the implementation of
the expression x/2.0 can be implemented by subtracting one unit to the exponent in
the floating-point representation of x.

4.2.2 Height Reduction

Height reduction is an instrumental transformation when compiling arithmetic ex-
pressions to hardware. It rearranges the way operations are performed preserving
the functionality of the original computations. By exploiting commutative, associa-
tive, and distributive properties of arithmetic operations, a compiler using height
reduction can reduce the number of operations in an expression, or/and the critical
path of the resulting hardware implementation. A special case of height reduction
is tree-height reduction (THR) also known as tree-height minimization [210] which
is applied to operations organized as a tree. By reducing the height of an expres-
sion tree, the technique exposes operator concurrency and consequently reduces the
latency of the hardware circuit that implements the expression.’

Simple uses of tree-height reduction, such as in t=a+b+c+d, only require the
application of arithmetic associativity to derive t= (a+b) + (c+d) . In other arith-
metic expressions, distributivity is a key transformation that exposes a wide variety
of hardware implementation trade-offs. For this reason we focus on distributivity in
the remainder of this section.

Often, the distributive property leads to implementations with more operations
and without lower latency, but in some cases distributivity can expose subexpres-
sions common to other expressions in the program. For instance, the application
of distributivity to the instruction sequence: t 1=ax (b+c+d); t2=axb+ax*d;
leads to the transformed instruction t 1=axb+axc+axd; which exposes the com-
mon subexpression: axb+axd resulting in the code sequence t2=axb+axd;
tl=t2+axc;. Without any resource sharing, direct hardware implementations of
both sequences have the same latency. The transformed sequence, however, requires

3 In the best case, THR reduces the height of an expression tree from O(n) to O(log n) where n
represents the number of nodes (operations) in the expression.

4.2 Instruction-Level Transformations 81

t=a[i * b+ afi] * c; x x

t=a[i]* (b +0)

[
*HE
I+

(a) (b)

Fig. 4.9 Distributive transformation: (a) original code and possible implementation; (b) code after
distributivity and possible implementation

only two additions and three multiplications whereas the original code would require
three additions and three multiplications.

Distributivity can also be used to reduce the latency of a hardware implemen-
tation as illustrated by the statement t 1=a~* (b*c*d+e) ;. The transformed code
after applying distributivity results in t1=(a*b) % (c+d) +axe; which requires
one additional multiplication. Its hardware implementation exhibits a latency of
2 x Lat(*) 4+ Lat(+4) clock cycles rather than 3 x Lat(x) + Lat(+) clock cycles
for the hardware implementation of the original statement.

There are cases, however, where distributivity leads to performance degradation
and an increase in the number of operations (i.e., and consequently hardware re-
sources) as illustrated in the example in Fig. 4.9. Without distributivity the memory
read, a [1], can be performed in parallel with the addition (b+c), which can result
in a latency of two clock cycles, when considering one cycle to read data from mem-
ory. The implementation using distributivity does not allow this parallelism and the
memory read for a [1] must be done before the additions. This results in a latency
of three clock cycles.

Although distributivity does increase the number of operators in a given expres-
sion, its application may break dependences leading to shorter execution schedules
when the number of hardware resources is limited. Figure 4.10 illustrates this sce-
nario for the original code in Fig.4.10a and for hardware implementations con-
strained to two hardware multipliers. The hardware implementation of the original
code, depicted in Fig.4.10a, would have to implement the multiplication in state-
ment t1=. .. in a second cycle due to the dependence on the addition in the same
statement. This would imply that in a second cycle one would have three multiplica-
tions, one corresponding to t 1= . . . and two multiplications corresponding to the
statement t2=. . .. Given the implementation constraint of two multipliers, these
three multiplications would have to be carried out in two additional steps, leading
to a schedule with three overall execution steps as depicted in Fig.4.10b. When
applying distributivity, as depicted by the code in Fig.4.10c, the multiplications
corresponding to statement t 1=. . . can be performed during a first execution step
using the two available multipliers. The multiplications corresponding to statement

82 4 Code Transformations

t1=a*(b+c)+a;
t2=d*(b+a)+d*(b-a); b ca b a b a d

L+ =]+]

EallEa e)
T =
S s e () L

L+ | [+ b
¥ v i
1 t2 i1 2
(a) (b)
a b a c b c a d
L x JILx J[= | [+ |
t1=a*b+a*c+a; — l ¢_¢_

t2=d*(b+a)+d*(b-a); x| [x]

(©) 1 t2

Fig. 4.10 Example of reduction in execution latency by using distributivity in the presence of
limited hardware multipliers: (a) original code and correspondent data-path; (b) possible imple-
mentation when a maximum of two multipliers are available; (¢) code after distributivity and cor-
responding data-path

t2=... can be carried out in a second execution step concurrently with the ad-
ditions for statement t1=. .. resulting in an overall execution with two steps as
depicted in Fig. 4.10d.

THR can be easily performed when the expression consists of operations of the
same type. When expressions include operations of various types, THR can be ex-
ecuted by finding the best combination of the arithmetic properties of those opera-
tions and factorization techniques. A THR algorithm can exploit commutative and
associative properties of the operators in an expression tree by subtree swapping and
rotation (left or right) with the goal of minimizing the tree height.

Applying THR may, in some cases, worsen the hardware implementation re-
sults, when some operations in the expression tree share hardware resources as their

4.2 Instruction-Level Transformations 83

s =a[0] + a[1] + a[2] + a[3];

BN
E
]

[]

(d) (e)

Fig. 4.11 THR: (a) a simple expression; (b) DFG with operations in cascade; (¢) DFG after the ap-
plication of THR; (d), (e) impact on the scheduling length considering the serialization of memory
accesses when applied to the DFG in (b) and in (c), respectively

execution must be serialized. Figure 4.11e depicts a schedule length, obtained after
THR, which is longer than the schedule length directly obtained from the original
DFG (Fig.4.11d). This example illustrates the need of a compiler to be aware of the
overall execution schedule when applying THR.

Lastly, THR can also be applied in the context of selection points in control-
flow intensive constructs. In this case, THR can be performed by reordering the
various multiplexers that might be needed to select among values, possibly adapt-
ing the selection logic. Figure 4.12 illustrates this height reduction transformation
for a simple code example with several nested if-then-else constructs depicting the
corresponding hardware implementations before and after the application of THR.

84 4 Code Transformations

if(cfi] == ") {

if(clk] == "+ { _
oper = 1; okl — &
}else { —»ﬁ
if(c[k] == "-') { I
oper = 1; clk] " g
}else { “+ —> 3|
oper = 0; cli] — 2
} §
} L]
}else {
oper = 0; oper
}
(a) (b)
clK] ,E 0 1 1 0
o]
£_|—\l{ MUX 11 11 MUX Ol
c[k] — g- T T
G+ —n 3
T Q
— S Oy
c[i] —> g.
e 8
o oper
(c)

Fig. 4.12 Height reduction transformation for multiplexer-based implementation of control-flow
intensive computations: (a) original code; (b) direct hardware implementation; (c) transformed
hardware implementation

4.2.3 Code Motion

Code motion [222] is a technique that changes the order of the execution of instruc-
tions in a program by moving them either against the flow of control (hoisting) or
along the flow of control (sinking).

Code motion is used extensively across control-flow branches [140, 271]. By
moving an instruction in a shared section of the control-flow graph against the
flow of control (hoisting) into disjoint sections of the control-flow graph, the com-
piler is trading off resources for concurrency. The two instances of the instruction
are potentially realized by distinct hardware operators and the overall execution
path is shortened. Figure 4.13 shows some examples of code hoisting and sink-
ing (Fig.4.13a—e) and an example of the application of code hoisting and THR to
reduce the critical path of the computation (Fig. 4.13c,f). This code hoisting trans-
formation results in one more adder unit, but decreases the critical path length by
the delay/latency of one adder unit. Code sinking, the reverse code transformation,

4.2 Instruction-Level Transformations

f
!
if(i<10)
a=b; sinking b a=b+c+d
if(f<10) " L, else b
a=a+c+d; a=b;
a=a+e,; hoistingb a=a+e,; l
' ! MUX ¢
(@) (b) ©)
? i f 10 b ¢ d e
(o))
g |£ I S S S l
Z 7]
5l |2 L=l L+ L+
» fit<10
Febis: sinking b+e azbicidie: a E
if(f<10) - clse { MUX °
a=a+c+d; hoisting b+e a=b+e
a
(d) (e) (f)

Fig. 4.13 Code hoisting in the presence of control flow: (a) original code; (b) transformed code
sinking b; (¢) DFG implementation of (b); (d) transformed code from (a) by hoisting a + e;
(e) transformed code from (d) by sinking b+ e; (f) DFG implementation of (e)

can be used to move the addition +e in the direction of the control flow. Using
code sinking, the code in Fig.4.13e would be transformed into the code depicted
in Fig.4.13b, in this case increasing latency but saving hardware resources. Other
forms of code hoisting and code sinking can be applied to Fig.4.13e to move up-
wards or downwards the subexpression b+e, respectively.

Conversely, when moving a common instruction or a common sequence of in-
structions along the control flow from two disjoint paths of the CFG into a shared
section of the CFG, the required hardware resources are reduced, but the execution
of the operations corresponding to the instructions is serialized.

In addition to its application within basic blocks or across control-flow con-
structs, code motion is also used in wider scopes. In the context of loops, loop invari-
ant code motion hoists to the loop preheader instructions that are always executed
when the loop executes and that evaluate to the same values on every iteration of the
loop. This loop invariant code motion transformation has the same benefits than in
traditional architectures as it reduces the number of times an instruction is executed.
When compiling for reconfigurable architectures, loop invariant code motion leads,
in general, to hardware implementations with fewer hardware resources for the exe-
cution of the computations of the loop body, as well as to a possible benefit in terms
of the length of schedule of the execution of the loop body.

86 4 Code Transformations

for(int k = 0; k < N; k++) { f°tf§]i1':)t Ifc(il;(]lf <N k++) {

for(intj = 0; j < M: j++) { ARSI

|

(k] C D [mp=oi] [k
G

| bi=bli]; ck=c[K]; | | bj=bl; |
(c) (d)

Fig. 4.14 Code hoisting example: (a) original code; (b) code after loop invariant code motion;

(c—d) algorithmic state machine charts representing possible hardware implementations for the
two code excerpts, respectively

The spatial nature of reconfigurable architectures leads, however, to particular
applications of this transformation that degrade the performance of the hardware im-
plementation as depicted by the example in Fig. 4.14. In Fig. 4.14b we depicted the
application of loop invariant code motion for the source code depicted in Fig. 4.14a,
where the loop-invariant statement c [k] (Fig.4.14a) is moved outside j loop. In
this example we assume that the target architecture has at least two independent
memory modules to which the compiler can map distinct array variables b and c.
In a direct hardware implementation corresponding to the original computation (not
shown), the execution would be able to concurrently access the arrays b and c as
depicted in the corresponding ASM chart in Fig. 4.14c. After the application of loop
invariant code motion, the hardware implementation is forced to execute the mem-
ory accesses in disjoint steps as depicted in the ASM chart in Fig. 4.14d. Thus, and

4.3 Loop-Level Transformations 87

although there is a reduction of the number of memory accesses, as c [k] is only
performed once for each iteration of k loop, the execution latency of the j loop
increases.

4.3 Loop-Level Transformations

An important goal of the more complex and thus far-reaching code transforma-
tions is the matching of the instruction-level parallelism (ILP) in a given compu-
tation to the available resources in the target reconfigurable architecture. Many of
these transformations expose the available concurrency in the input program, e.g.,
by unrolling, and/or increase the required data availability, e.g., by tiling. In addition
to enabling transformations such as the ones described in the previous section and
even other more generic code transformations, many of loop-level transformations
enable and/or expose many opportunities for data management as described in the
next section.

Tables 4.3 and 4.4 illustrate representative loop transformations [332] such
as coalescing, collapsing, distribution (fission), jamming (fusion), unroll-and-jam,
interchanging, peeling, reordering, reversal, strip-mining, tiling, splitting, and un-
rolling, whose application in the context of reconfigurable architecture exhibits
various unique characteristics. A base loop transformation that simplifies the ap-
plication of many other loop transformations is loop normalization. In this loop
iteration-space transformation, the compiler sets the loop control variable to exhibit
an initial zero value and a unity increment step adjusting accordingly all the uses of
the control variable in the loop body as well as the loop’s upper bound expression.

We now illustrate the use of three common loop transformations that focus on
increasing the available parallelism, namely loop unrolling, loop tiling, and loop
fusion.

4.3.1 Loop Unrolling

Loop unrolling is the most commonly used loop transformation when mapping loop
computations to hardware. The body of the unrolled loop, usually the innermost
loop of a nest, is replicated, and the index expression corresponding to each of the
unrolled iterations is propagated to the statements in each instance of the loop body
as illustrated in Fig. 4.15.

By replicating the statements in the body of the loop, loop unrolling exposes
more opportunities for the concurrent execution of the multiple instances of arith-
metic operators corresponding to the various instructions in the statements of the
loop, only subject to data or hardware resource dependences. In addition to the in-
crease in the potential for instruction-level parallelism, loop unrolling also decreases

88 4 Code Transformations

Table 4.3 Sample loop transformations and illustrative examples (part I)

Loop transformation Illustrative examples

Original source code

Transformed code

Normalization

for(i=2; i<N; i++)

for(i=0; i<N-2; i++)

sum += A[i-2]; sum += Ali];
. for(i = 0; i < N; i++){ for(i = 0; i < N; i+=2) {
Unrolling sum += A[il; sum += A[i];
(fully or by a factor k) \ i sum += A[i+1];
}
if(b)
for(i=0; i<N; i++) {
for(i=0; i<N; i++) { sum += Ali];
L sum += Ali]; Ali] = 0;
Unswitching if(b) Afi] = 0:)
} else
for(i=0; i<N; i++)
sum += A[i];
for(i=0; i<N; i++) for(i=N-1; i>=0; i--)
Reversal sum += Alil sum += A[il:

Interchange/reordering

for(j=0; j<M; j++)
for(i=0; i<N; i++)
sum += A[j][i];

for(i=0; i<N; i++)
for(j=0; j<M; j++)
sum += A[j][i];

Strip-mining
(single nested loops)

for(i=0; i<N; i++)
sum += A[i];

for(is=0; is<N; is+=S)
for(i=S; i<min(N,is+S-1); i++)
sum += A[i];

Tiling/blocking
(generic nested loops)

for(j=0; j<M; j++)
for(i=0; i<N; i++)
sum += A[jl[i];

for(jc=0;jc<M; jc+=B)
for(ic=0;ic<N; ic+=B)
for(j=jc;j< min(M,jc+B-1); j++)
for(i=ic;i<min(N,ic+B-1);i++)
sum += A[j]i];

for(i=0; i<N; i++)

for(i=0; i<N; i++) {

Fusion/mergin sum = A[i]; sum += A[iL;
sing for(i=0; i<N; i++) prod += B[iJ*Blil;
prod += B[i]*B[i]; }
for(i=0; i<N; i++) {
- e sum += A[i]; for(i=0; i<Nj; i++) sum += A[i];
Fission/distribution prod += Bfil*B[i; for(i=0; i<N; i++) prod += B[iJ*B[i;
}
for(i=0; i<N/2; i++)
. for(i=0; i<N; i++) sum += A[i];
Splitting sum += A[i; for(i=N/2; i<N; i++)
sum += A[i];

the iteration control overhead as the run-time tests used to determine if a given iter-
ation of the loop is executed are partially or totally eliminated.

The increase in the required resources to meet the demands of the operators in
the unrolled loop may require a slight increase in storage to accommodate the many
temporary register values used in the evaluation of the various operations. Further-
more, the potential concurrent execution of many operators, and despite the potential
for data reuse, increases the pressure on data bandwidth or data availability, mea-
sured on a per iteration basis. As such, in some instances, loop unrolling might not

4.3 Loop-Level Transformations

Table 4.4 Sample loop transformations and illustrative examples (part II)

89

Loop transformation

Illustrative examples

Original source code

Transformed code

PR sum += A[0];
Peeling for(i=0; _:_<_NA’ 1.+.+) for(i=1; i<N; i++)
sum += Alil sum += A[i];
for(t=0; t<N*N; t++) {
for(j=0; j<N; j++) j=tN;
Coalescing for(i=0; i<N; i++) i=t%N;;
sum += A[j]i]; sum += A[j][i];
}

Collapsing (a special
form of coalescing when
loop limits match array
bounds)

for(j=0; j<M; j++)
for(i=0; i<N; i++)
sum += A[j]i];

for(i=0; i<N*N; i++)
sum += A[i];

Alignment

for(i=1; i<=Nj; i++) {
bli]=ali];
d[i]=b[i-1];
cli]=a[i+1];

}

d[1]=b[0];

for(i=2; i<=Nj; i++) {
bli-1]=a[i-1];
d[i]=b[i-1];
cli-1]=a[i-1];

)

b[N]=a[N];

¢[N]=a[N+1];

Unroll and Jam

for(j=0; j<M; j++)
for(i=0; i<N; i++)
sum += A[j]i];

for(j=0; j<M; j+=2)
for(i=0; i<N; i++) {
sum += A[j|[i];
sum += A[j+1][i]; }

for(i=1; i<=N;i++) {

for(i=0; i<=N;i++) {

sum += A[j|[i];

. a[i]=blil; if(i>0) a[i]=b[il;
Shifting d[[i]]:a{i!l]; ifEi<1\?) c[i[]i+ 15ia[i];
} }
for(j=0; j<M; j++) for(j=0; j<M; j++)
Skewing for(i=0; i<N; i++) for(i=j; i<N+j; i++)

sum += A[j][i-j];

#-deﬁne W3

int a[WJIW], bIWIIW], o[WJ;

fsr(x=0; X <W; x++) {

sum = 0;

for(y=0; y < W; y++) {
sum += (a[x]ly] * bly][x]);

c[x] = sum;

}
(a)

#define W 3
int a[WITW], BIWIIW], c[W];

for(x=0; x <W; x++) {
sum = (a[x][0] * b[O][x]);
sum += (a[x][1] * b[1][x]);
sum += (a[x][2] * b[2][X]);
c[x] = sum;

}

(b)

Fig. 4.15 Full loop unrolling transformation and opportunities for parallel execution: (a) original
C source code; (b) full unrolling of inner loop

90 4 Code Transformations

be profitable, or the corresponding performance gains might not justify the addi-
tional required resources.

A loop can be unrolled either partially or fully. In partial loop unrolling, the body
of the loop is replicated only k times with k less than the number of loop iterations
to be executed.* When the loop bounds are not known statically, loop unrolling re-
quires the use of control-flow constructs to determine if given iteration should be
executed. This overhead can be mitigated by the use of predicates that check, and
thus validate, the execution of chunks of k iterations, allowing the unrolled £ itera-
tions to be executed without checks. In fully loop unrolling the loop is completely
unrolled, i.e., the body of the loop is replicated as many times as the number of iter-
ations of the loop. In this case, the loop bounds must be known statically, possibly
by the use of constant propagation, as in the example depicted in Fig. 4.15.

After loop unrolling, the compiler can apply a wide range of other code trans-
formations. For example, exploiting commutative and associative properties to the
example of Fig. 4.15b, a compiler can rearrange the accumulations in the sum vari-
able and apply THR while still exploiting the potential for concurrent execution of
the three multiplications. Figure 4.16 depicts two illustrative hardware implemen-
tations corresponding, respectively, to the original source code in Fig. 4.15 and the
transformed code using loop unrolling and THR targeting an architecture with mul-
tiple hardware multipliers.

4.3.2 Loop Tiling and Loop Strip-Mining

Loop tiling [332], or blocking, transforms the iteration space of the loop nest by
structuring the execution of the loop into blocks/tiles of iterations of the original
loop. A tilled loop is thus structured as two loops, where an outer loop, called
control loop, determines which of the blocks of iterations the inner loop executes.
Figure 4.17 depicts an example of loop tiling, where the iteration space of the orig-
inal loop is split into blocks of size Bl x B2 x B3.

As highlighted in this example, loop tiling promotes locality, which is an impor-
tant property to reduce cache hit misses when cache memories are used [205]. More
importantly, in the absence of data dependences, invocations of the innermost loop
in a tiled loop can be executed concurrently. After loop tiling, a compiler can distrib-
ute the computation associated with each iteration of the control loop (an invocation
of the inner loop) across distinct FUs and distribute the corresponding data they ma-
nipulate between multiple distributed memories e.g., the block RAMs in FPGAs).
A particular case of loop tiling is loop strip-mining [332], where tiling is applied to
singly nested loops, creating an inner loop responsible for the computation on each
strip and an outer loop to control or traverse the various strips.

4 Common implementations of partial loop unrolling use an unrolling factor that evenly divides
the number of loop iterations. Otherwise, the transformed code will have to include an epilogue or
additional control flow in the body of the loop.

4.3 Loop-Level Transformations 91

ﬂ
X

2
J

! T alxlly] | biylix]
— | alxliy] | biylix]]

clx]=sum; x++;

| _a=xw+y:i_b=y*\;"d+x: | s
[axy=a[_a]; byx=b[_bJ;|

(a)
>

5 (x<W) = sum=0; [+— |alx][0] | b[0][x] | alx][1]] b[1]x] | alx][2] | b[2](x] | alxI[3] | bI3](X]|

T l T [

| _al=x"W; _bi=x; |
!
[axyt=al at];..; |

t=axy*byx1; ...;

sum =11 +12 +.;

(b)

Fig. 4.16 Full unrolling hardware implementations: (a) from the original code depicted in
Fig.4.15a; (b) resulting from loop unrolling and THR (code presented in Fig. 4.15b)

The locality and coarse-grained concurrency make loop tiling or loop strip-
mining particularly suited for either fine-grained or coarse-grained reconfigurable
architectures as highlighted by the example in Fig.4.18. Figure 4.18b depicts the
application of loop strip-mining to the source code in Fig. 4.18a whose normaliza-
tion of the innermost loop is depicted in Fig. 4.18c. The inner loop of the strip-mined

92 4 Code Transformations

for(ii=0; ii<N; ii+=B1)

for(jj=0; jj<N; jj+=B2)

for(i=0: i<N- i for(kk=0; kk<N; kk+=B3)
fofrgr—(J%(; "i’l\r't)ﬂ for(i=ii; i<min(ii+B1,N); i++)

for(ke0; k<N: k) for(=i <min(j+B2.N): 1+4)

CII+=ATIIKI*BIKG] o A e

(a) (b)

ANkl | x | BIKIOl | = [CIilll - | AL | x| B | = | CIili
(c)

AlilKl | x | BIK | = | CIi] - | Al | x| B = | CIil
(d)

Fig. 4.17 Loop tiling applied to a matrix multiplication example: (a) original source code; (b) code
after loop tiling; (c—d) layout of data being read/write using the (c) original source code and the
(d) transformed code

for(is=0; is<512; is+=64) | | for(is=0; is<512; is+=64) {

for(i=0; i<612; i++) for(i=is; i<is+64; i++) for(i=0; i<64; i++) {// L1: load block

cli] = alil*b[i]; cfi] = a[i]*bfi]; local_ali] = a[i+is];
local_bl[i] = b[i+is];
(a) (b)

for(i=0; i<64; i++) // L2: compute over block
local_c[i] = local_al[i]*local_bli];

for(is=0; is<512; is+=64) for(i=0; i<64; i++) I/ L3: store block

for(i=0; i<64; i++) c[i+is] = local_c]i];

c[i+is] = a[i+is]*b[i+is]; }

(c) (d)

Fig. 4.18 Loop strip-mining example: (a) original code; (b) code after strip-mining with strips of
64 values; (¢) normalization of the innermost loop; (d) distribution of the innermost loop

loop can then be split into three consecutive loops using loop distribution (described
in the next section) resulting in the code in Fig. 4.18d. In the first of these three loops,
the computations access data in the two arrays a and b mapped to local storage. In
the second loop, the computations perform the multiplications using the data in in-
ternal storage and in the last loop the computation writes the results to the array c
mapped to external storage. A hardware implementation based on the transformed

4.3 Loop-Level Transformations 93

a[0:511] b[0:511] c[0:511]

(a)

Y }
a[0:511] 13[0:511]4| Hoes —| Hes | “oas [~ closT
Y

Compute blocks

AN J AN J
v Y
Load blocks Store blocks
(b)
Local_.a | | Local_b J Local_c
[0:63] [0:63] [0:63]
b[0:511] J
Local_a | | Local_b Local_c
[64:127] [64:127] [64:127]
J c[0:511]
Local_a | | Local_b Local
[128:1911[|| [128:191] [1;?115(1:]
a[0:511]
Local_a | | Local_b J Local_c
[192:255] [192:255] [192:255]
(c)

Fig. 4.19 Possible implementations for the example in Fig.4.18: (a) based on the original code;
(b) after loop strip-mining and loop distribution; (¢) considering coarse-grained vectorization

code in Fig.4.18d is depicted in Fig. 4.19b. It can take advantage of the use of dis-
tributed local memories and of the splitting of the computations in three stages cor-
responding to the three loops: loading of a block of data, computing over a block,
and storing a block of results. The organization of the computation in stages sug-
gests the application of coarse-grained pipelining execution, a technique described
in Chap. 5.

An alternative compilation strategy is for the compiler to apply unrolling to the
outer loops followed by strip-mining of the inner loops of the loop nest as depicted
in Fig.4.19c, resulting in a code that is easily vectorizable. As it is also apparent

94 4 Code Transformations

in Fig.4.19c the data in the input arrays a and b can be easily partitioned across
two internal/external RAMs thereby increasing the availability of the data, and thus
improving the overall performance of the implementation, even without resorting to
pipelining execution techniques.

Overall, loop tiling/strip-mining transformations potentially increase data local-
ity and enable the application of coarse-grained parallelization and pipelining ex-
ecution techniques, across iterations of the control loops. Loop tiling also exposes
opportunities for array memory mapping (described in Chap. 5), as blocks of itera-
tions of the tilled loops may access disjoint sets of data. If the compiler maps these
sets to distinct physical memories, memory access contention is avoided.

4.3.3 Loop Merging and Loop Distribution

Loop merging or loop fusion [332] merges two loops into a single loop. The body
of the fused loop consists of the concatenation of the loop bodies of the two orig-
inal loops as depicted in the example in Fig.4.20. This transformation is trivially
implemented when the loop bounds of the loops are identical and there are no data
dependences between the two loops, as in the transformed code the sequences of the
statements of the two original bodies execute in an interleaved order.

When targeting reconfigurable architectures, loop fusion converts coarse-grained
to fine-grained concurrency. As it is apparent in the example in Fig.4.20, a com-
piler could easily identify that the two loops can be executed in parallel (coarse-
grained concurrency) and generate an architecture with task-level parallelism with
access to the shared data array a. Loop fusion may increase the pressure on mem-
ory bandwidth and on register usage, as the statements corresponding to the merged
loop bodies can be concurrently executed (fine-grained concurrency), thus requiring
more registers/operations and memory accesses per iteration.

The dual loop transformation to loop fusion is loop fission or loop distribution.
Loop distribution splits a single loop into two loops with the exact same loop bounds
but distributing the statements in the body of the original loop between the bodies
of the two newly created loops. Excluding output- and antidependences, the trans-
formation is always legal as the relative order in which the statements execute in the
original loop is preserved in the transformed code. As this transformation is the dual
of loop fusion, we omit another illustrative example here.’

for(i=0; i<N; i++) for(i=0; i<N; i++) {
sum += afil; sum += afi];

for(i=0; i<N; i++) prod += a[i]*al[i];
prod += a[i]*a[il; }

(a) (b)

Fig. 4.20 Loop fusion example: (a) original source code; (b) code after loop fusion

3 Loop distribution can be applied to the code of Fig. 4.20b to derive the code in Fig. 4.20a.

4.4 Data-Oriented Transformations 95

4.4 Data-Oriented Transformations

We now describe three basic data-oriented transformations that are particularly
suited for reconfigurable architectures, given the flexibility of organization and con-
figuration of storage structures they allow, namely, data distribution, data replica-
tion, and scalar replacement. Many, if not all, of the data-oriented transformations
exhibit a strong synergy with loop-level transformations, in particular for computa-
tions that manipulate array variables using affine index access functions.

4.4.1 Data Distribution

Data distribution, commonly used for array variables, partitions each array into dis-
joint array subsets, each of which is then mapped to a distinct memory module. This
transformation, when combined with loop unrolling, improves array data availabil-
ity and allows the generation of hardware implementations that can concurrently
access the data without contention.

Figure 4.21 illustrates the application of loop unrolling, and data distribution for
the img array variable. The original img array is first partitioned into two distinct
arrays, imgOdd and imgEven, which are then mapped to two different memories.
This memory mapping of the two arrays allows the two memory load operations,
corresponding to the unrolled statement in the code shown in Fig.4.21b, to be exe-
cuted concurrently.

Data distribution does not increase the required storage needs as the original data
is partitioned into disjoint data sets. Other than a possible execution time overhead in
reorganizing the data via distribution, data distribution increases the availability of
data, provided the architecture has enough disjoint memory modules with adequate
capacity to accommodate the partitions.®

type img[NJINJ; type imgOdd[NJIN/2], imgEven[NJIN/2];
for(=0: < N: j4) { for(=0; j < N; j++) {

%;).r(i=0; i<N;i++) { f;r(i:O;_i <N; i+.=2.) {

. = imglilll: ... = imgOdd([j][i/2];
... = imgEven(j][i/2];

e }
} .
(a) (b)

Fig. 4.21 Loop unrolling and array data distribution example: (a) original source code; (b) loop
unrolled by 2 and distribution of img

6 The use of distributed memories can be avoided when memory banks have enough memory
access ports.

96 4 Code Transformations

4.4.2 Data Replication

Data replication creates various copies, or replicas, of specific data items which are
then mapped to distinct storage structures. This transformation thus increases the
availability of the data by allowing concurrent data accesses at the expense of in-
creased storage use. Figure 4.22 illustrates a combined application of loop unrolling
and data replication for the img array in the original example code. The code is
first unrolled by a factor of 2, generating two statements that access the img array.
These accesses are then matched with two distinct array copies imgA and imgB of
the original img array. For simplicity we omit here the additional code a compiler
has to generate to support the initialization of the data replicas. In many reconfig-
urable architectures, however, the overhead of this setup phase can be mitigated by
the support in hardware for concurrent memory operations and/or by overlapping
this phase with other computations.

When applied to array variables, this transformation has to be exercised with cau-
tion as it increases the availability of data at the expense of potentially substantial
increase in allocated storage. Its applicability may be therefore limited to small ar-
rays that are immutable for a specific locus of computation. For example, while an
array variable is modified throughout the entire program, in a specific loop nest it
may only be read. This is a common case with algorithm parameters or computa-
tional coefficient loaded at the beginning of the program and never modified after-
wards. In the presence of mutable data, replication raises the issue of consistency.
The execution must ensure all replicas are updated with the correct values before
the multiple copies can be accessed, and that any additional computation executed
afterwards observes any possibly modified values [352].

4.4.3 Data Reuse and Scalar Replacement in Registers
and Internal RAMs

In many computations, particularly in the context of digital image and signal
processing, data values are often reused. Examples of this reuse occur when the

type imaINIINI type imgA[N][N], imgBIN]IN];

fér(i:O; j<N;j++) { for(j=0; j < N; j++) {

oD i (T

, ... =img[jlli]; S imaBiiie
}

) -
(a) (b)

Fig. 4.22 Loop unrolling and array data replication example: (a) original source code; (b) loop
unrolled by 2 and replication of img

4.4 Data-Oriented Transformations 97

computation repeatedly uses coefficients of a signal transformation or reuses values
when repeatedly accessing overlapped sections of an array.

A compiler can exploit this data reuse by selectively choosing which data values
are reused in a given computation and saving or caching them in scalar variables,
which are mapped to registers, in a transformation known as register promotion.
The compiler transforms the code to save the reusable values in registers (or inter-
nal RAMs) the first time the computation accesses them. The values are then reused
for the remainder of the computation. Storage allocated to this reusable data is re-
claimed when the values are no longer needed.

As with traditional architectures this caching of data “locally” in registers or
RAMs has the potential to improve the overall performance of the corresponding
hardware implementation by two main factors. First, the use of registers substan-
tially decreases the data access latency. In fine-grained reconfigurable architec-
tures where registers and RAMs are distributed throughout the architecture, reusing
data in discrete registers tremendously increases the amount of data bandwidth
as all the registers can be accessed concurrently. Second, by reusing data inter-
nally, the implementation can drastically reduce the number of external memory
accesses [289,291].

The advantages of data reuse and scalar replacement come at the expense of in-
creased storage requirements and the need for the compiler to explicitly manage the
caching of data in internal storage resources. Given the common lack of support
(most notably in fine-grained architectures) for hardware mechanisms that support
high-level abstractions of virtual memory and memory coherency between external
and internal storage, compilers for reconfigurable architectures must control pre-
cisely which data items are cached, where to allocate them, and when to discard
them, as well as maintain coherency between internal and external data.

Figure 4.23 illustrates the application of scalar replacement to the vec and
coeff array variables. In the original code, in Fig.4.23a, the N locations of the
vec array are repeatedly accessed on every iteration of the j loop. A way to cap-
ture this reuse is to peel the first iteration of the j loop (for j=0) and during the i
loop corresponding to this first iteration, save the N elements of each row k of vec
in the auxiliary vector vec_sr. The values in vec_sr are mapped to a set of N
registers or an internal RAM module in the target architecture and reused through
the remainder N-1 iterations of the j loop. Similarly, the location coeff [k] is
repeatedly accessed throughout the entire computation and can be saved (outside
the 7 loop) into a scalar variable.

Data reuse analysis and scalar replacement can also be used in more sophisti-
cated reuse cases. The example code depicted in Fig. 4.24a repeatedly accesses a
set of three consecutive locations of the y array variable. Across all but the first two
iterations of the i loop, two of the three array references have been already accessed
in the previous iteration of the loop. Their values can thus be saved in registers. By
organizing the registers in a tapped-delay line with shifting between the values of
the line at every iteration of the i loop no explicit addressing is required [94]. The
transformed code shown at the top of Fig. 4.24b can be synthesized using a tapped-
delay line, where the various taps correspond to the scalar variables D1, D2, and

98

type coeff[M];
type vec[N];

for(k=0; k < M; k++) {
for(j=0; j < N; j++) {
for(i=0; i < N; i++) {

... = vec[K][i] * coefflk];
}

(@)

Fig. 4.23 Scalar replacement using loop peeling: (a) original source code; (b) scalar replacement

of vec and coef £ using loop peeling

for(int i=3; i<N; i++) {
VIl = YT +y[i-2w2+y[i-31'w3;

4 Code Transformations

type coeff[M], coeff_sr;
type vec[M][N], vec_sr[N];

for(k=0; k < M: k++) {

/*i,j loop invariant */

coeff_sr = coeff[k];

/* iteration for j=0 */

for(i=0; i < N; i++) {
vec_sr[i] = vec[k][i]; /* saving data */
... = vec_sr[i] * coeff_sr;

}
for(i=1; j < N: j++) {

for(i=0; i < N; i++) {
... = vec_st]i] * coeff_sr;

}

-
}

(b)

int d3, d2=0, d1=0;

for(int i=1; i<N; i++) {
d3 = d2; /* shifting */
d2 = d1;
d1 = y[i-1];
if(i>2)
yli] = d1*wl+d2*w2+d3*w3;

(=1 [=1 |
=

v v v
[yi-11] w|1 [yii-21] W|2 [vi-31 | W|3
| | |

| S R B |

[>] [=] [x|

C))

Fig. 4.24 Data replacement and scalar replacement example using a tapped-delay line: (a) original

(b)

code and partial implementation; (b) transformed code and partial implementation

4.4 Data-Oriented Transformations 99

D3.7 For this particular reuse case, the data transformation allows the implemen-
tation to reduce the number of memory reads from 3 x N—3 to N-1, which can
be a substantial reduction for large values of N. This reduction has a potential sub-
stantial impact on the length of the schedule for the hardware implementation, in
a setting where the implementation does not have enough memory bandwidth (or
simply available ports) to fetch three simultaneous data items corresponding to the
3 reads to the y array variable.

While in this example we have chosen to exploit the reuse in scalar variables with
a tapped-delay line, it is also possible to reuse the data using a local RAM module.
In this latter case, the delay line is conceptually implemented using read and write
RAM operations. This implementation typically uses much fewer resources, but all
the data elements of the tapped-delay line are not immediately available which can
be a substantial disadvantage. The work by Baradaran et al. [29] explores the space
and time trade-offs for these alternative implementations.

This data transformation is simple to understand and apply when, in the con-
text of the execution of a given loop, the reused data is only read. However, scalar
replacement is fairly complicated to implement, when in a given loop data that is
reused is both read and written, in particular in the presence of multiple data refer-
ences that reuse the same array location [28]. In these more complex scenarios, care
must be taken to ensure that the cached data in the scalar replaced register is copied
back into the original array so that future instantiations of the transformations can
use the correct value.

Data-reuse is also exploited in temporal common subexpression elimination. In
this technique, a compiler identifies expressions already computed in previous itera-
tions of a loop, replacing them with the registered values. This variant of data reuse
is commonly used in the compilation of window-based image processing applica-
tions [44], as illustrated in Fig. 4.25.

4.4.4 Other Data-Oriented Transformations

We now briefly describe various less commonly used, data-oriented transformations
that arise naturally in the context some of the loop transformations previously de-
scribed.

As an example, when performing loop fission or loop fusion is often needed
to perform scalar expansion or array contraction. Scalar expansion uses an array to
store the successive values of a scalar variable accessed for each iteration of the loop.
Array contraction refers to the opposite transformation. Figure 4.26 illustrates the
need for scalar expansion when applying loop distribution between the statements 6
and 7 in the loop in Fig. 4.26a. This loop distribution requires the implementation to
save the value of the max variable at each iteration of the first loop, as each of these

7 This use of a tapped-delay line is similar to the approach used in VLIW (Very Long Instruction
Width) [110] and EPIC (Explicitly Parallel Instruction Computing) [272] architectures known as
rotating registers [86, 98].

100 4 Code Transformations

int sum2 = 0, sum;

for(i=0; i<N_COLS-1; i++) {
sum1 = sumz;
sum2 = 0;
for(j=0; j<N_ROWS; j++) {
if(i==0) {

int sum1, sum2;

for(i=0; i<N_COLS-1; i++) {
int sum1 = 0;
int sum2 = 0;
for(j=0; j<N_ROWS; j++) { sum1 += A[jI[i];
sum1 += A[j[i]; sum2 += A[j][i+1];
sum2 += A[j][i+1]; }else {
} sum2 += A[j][i+1];
B[i] = (w1*sum1 + w2*sum2)/2; }
} }
B[i] = (w1*sum1 + w2*sum2)/2;
}

(a) (b)

Fig. 4.25 Temporal common subexpression elimination: (a) original code; (b) possible trans-
formed code

max = MIN_INT;
. for(i=0; i<N; i++) {

1

2. max = MIN_INT;
3. for(i=0; i<N; i++) {
4. t1 = a[i]*b[il;

5. cfi] =f1(t1);

6. if(t1>max) max = t1;

7. d[i] = f2(max);

t1 = a[i]*b[i];
c[i] = f1(t1);
if(t1>max) max = t1;
array_max[i] = max;

CENOOA LN
Al

. for(i=0; i<N; i++) {

8.} 10. max = array_max]i];
9. ... 11. d[i] = f2(max);

12.}

13. ...
() (b)

Fig. 4.26 Loop distribution requiring scalar expansion: (a) original code; (b) code after loop
distribution

specific values is required in the same iteration of the second loop. To save these val-
ues of the scalar variables, the transformation creates the array ar ray_max variable
as depicted in the transformed code in Fig. 4.26b. The opposite transformation, loop
fusion, can be applied to merge the two loops in Fig.4.26b and in this case array
contraction is used to remove the array variable array_max.

Another common data-oriented transformation consists in the reorganization of
the data-layout of array variables. The classic example is the transposition of an ar-
ray from column-major to row-major data-layout organization (and vice versa) to
best match the data access patterns of a specific loop nest. This alignment of data

4.5 Function-Oriented Transformations 101

layout with data access patterns allows a computation to improve its data locality
and data reuse, possibly eliminating many redundant address calculations as de-
scribed in Sect. 5.5.2. Another data-layout transformation is array padding. Array
padding increases the length of array dimensions in order to change the distances be-
tween consecutive array elements (known as intra-array padding) or between arrays
(known as inter-array padding). This transformation can be useful in the context
of fine-grained reconfigurable architectures, as it may reduce the complexity of the
address generation units by allowing the same address generator to be used when
addressing different arrays in the same loop [275]. In addition, arrays can be al-
located and padded at specific address boundaries such that the corresponding ad-
dresses are calculated by concatenating a base address value with the index value of
the element being accessed, thereby avoiding the need for the addition of the base
address of the array to the index value.

Lastly, and closely related to loop-level transformations, are the data strip-
mining and data-permutation transformations. Data strip-mining transforms a
single-dimensional array into a two-dimensional array and is used in combina-
tion with data-layout techniques commonly when compiling for multi-processor
architectures with distributed memories [18]. Data-permutation preserves the di-
mensionality of an array but substitutes the original array indexing, say a [1] with
a generic mapping function of the enclosed loop indices, say a [f (1)]. The last
technique is used to transform array access patterns in a given loop, according to
different data layout organizations, and is used when explicit data-reorganization is
impractical.

4.5 Function-Oriented Transformations

We now describe several function-oriented transformations used when compiling to
hardware procedure/function constructs in imperative languages,® namely, function
inlining/outlining and recursive functions.

4.5.1 Function Inlining and Outlining

Function inlining and outlining are dual source code transformations with com-
plementary effects. Function inlining (also known as function unfolding and in-
line expansion) replaces a call instruction or function invocation statement with the
statements in the body of the invoked function [251]. In the context of hardware
compilation, this transformation instantiates the hardware corresponding to the im-
plementation of the function, at the portion of the hardware implementation that cor-
responds to the call instruction. Function outlining (also known as inverse function

8 Although similar in spirit, the techniques described here are not to be confused with specific
research work on compilation to hardware of programs specified using functional programming
languages.

102 4 Code Transformations

inlining, function folding, and function exlining [313]) abstracts two or more similar
sequences of instructions replacing them with a call instruction or function invo-
cation of the abstracted function. While function inlining increases the amount of
potential instruction-level parallelism by exposing more instructions in the function
call-site, function outlining reduces it.

We now illustrate the application of these transformations for the implementation
in hardware of C program functions and segments of code. Figure 4.27b illustrates
the hardware implementation of the func function with two input arguments as de-
picted in Fig. 4.27a. A noninlined hardware implementation is depicted in Fig. 4.27¢c
where the function hardware is shared by the two call sites. In this case multiplexers
are used to select the appropriate input argument values and registers are used to
store return results corresponding to each call site. A truly inlined implementation
of the func function is depicted in Fig. 4.27d where instantiations of the hardware
corresponding to each function call site do not share resources and have taken ad-
vantage of the specific value for the argument in the first call site. In addition to
increasing the opportunities for resource sharing [253], function inlining also al-
lows the hardware specialization corresponding to the inlined code for each specific

int func(int a, int b) {
if (a < 0) [a] Lo]

return a * b; x D y2
else l l l l
return (-a) * b; MUX MUX
x1 = func(x1, 1),
x2 = func(x2, y2); | " | | 2 |
(a) (c)

[x]

LESS NEG
THAN 0
S\
func

x1
(d)

Fig. 4.27 Example with function inlining: (a) source code; (b) hardware block for the function; (c)
hardware block for sharing the function hardware; (d) hardware implementation without sharing

4.5 Function-Oriented Transformations 103

void func(int *v1, int *v2, |
int p1, int p2) {
int temp;
temp =p1 + p2;
o . *v1 = temp;
X=a+b; *V _ T
y=x+1; v2 =temp + 1;
}
z =k +t
w=z+1: func(&x,&y,a,b,);
func(&z,&w,k,t); |
(a) (b) (c)

Fig. 4.28 Example with function outlining: (a) source code; (b) code after outlining; (c) shared
hardware block

call site. Typical examples of specialization include the use of constant parameters,
leading to constant propagation, type specialization as well as bit-width and operator
specialization.

Figure 4.28 depicts the application of function outlining. For the code segment
in Fig.4.28a the compiler recognizes a similar computational pattern for the two
sequences of instructions. Figure 4.28b depicts the transformed code using soft-
ware function outlining where the two sequences are now replaced by call instruc-
tions to the abstracted func function whose hardware implementation is depicted
in Fig. 4.28c. Function outlining therefore improves the amount of resource sharing
as all invocations use the same hardware for implementing the original function-
ality. The advantages of resource sharing come at the expense of constraining the
potential instruction-level parallelism in the hardware implementation as the vari-
ous function invocations now need to have their execution serialized by the shared
hardware resources.

When performing function inlining or outlining a compiler can strike a balance
between concurrency and resource sharing, as depicted in the example in Fig. 4.29
for function outlining. In the code depicted in Fig.4.29a the compiler can read-
ily recognize the same computational patterns across the two sets of statements
{s1,s2} and {s3,s4} with the exception of a subtraction operation in s1 and
an addition operation in s 3. Still, the compiler can generate the combined hardware
implementation depicted in Fig. 4.29b, that implements both structures. This hard-
ware implementation uses a multiplexer to select the intermediate value that cor-
responds to each function while sharing all hardware resources corresponding to
common operations in the two sequences of instructions in the original code. When
using pipelined execution techniques, the implementation can effectively time share
the resources corresponding to the multiplication by cO, the addition by c1, and the
shifting by c2 operators and thus exploit instruction-level parallelism.

104 4 Code Transformations

s1: q0a =h3-g3;

s2: q0 =(q0a * c0 + c1) >>c2;
s3: t0a =h3 + g3;

s4: 10 =(t0a*cO0 +c1) >>c2;

(a) (b)

Fig. 4.29 Example of abstraction of highly similar code sequences: (a) original segment of code
taken from a real implementation; (b) hardware block abstracting code sequences {s1,s2} and
{s3,s4}

4.5.2 Recursive Functions

The compilation to hardware of recursive functions presents a serious challenge, as
in a strict sense it would require dynamic hardware replication on recursive invoca-
tion. An obvious alternative is to generate specific hardware implementations with
auxiliary storage for a call-stack and argument stack. Upon invocation, the imple-
mentation would have to save the relevant execution state, i.e., internal register data
and overall execution points, onto the call-stack and invokes the called function. On
a return, the state of the hardware resources would have to be restored so that execu-
tion would proceed. Clearly saving and restoring the state of a concurrent hardware
execution that possibly exploits pipelining and other execution schemes is far from
being trivial.

Another possible implementation transforms first the recursive function to an it-
erative implementation. A simple transformation is possible with tail-recursive func-
tions as the recursive call is the last operation in these functions. However, automatic
translation of nontail recursive functions is still nevertheless a challenge to perform
automatically.

4.6 Which Code Transformations to Choose? 105

4.6 Which Code Transformations to Choose?

While the code transformations described in this chapter are well known in the realm
of compilation for traditional architectures targeting either uniprocessor or multi-
processor machines, they expose hardware resources and execution time trade-offs
that are specific to reconfigurable architectures. Despite the possibility of a syner-
getic combination with many other loop transformations and the instruction-level
transformations described here, many of these transformations interfere with each
other. The choice of which code transformations to use, which transformation para-
meters to select, and what transformation sequence to apply are fundamentally hard
problems.

In the context of reconfigurable architectures the possibility of exploiting vari-
ous execution schemes (see Chap. 5) both spatially and temporally and the inherent
limitations of the target hardware devices exacerbate the difficulty of this selection
process. Invariably, and given the pressure for fast compilation times, compilers use
predefined and empirically established combinations of transformations to deliver
effective hardware implementations.

Ultimately, the application of the transformations is constrained by the character-
istics of the target architecture. When using an internal compilation algorithm, the
compiler may rely on the perceived impact of each of these transformations in spe-
cific target architecture metrics such as the amount of storage, operator resources,
or memory bandwidth. To illustrate such process we present in the Table 4.5 a set

Table 4.5 Selected transformations and their qualitative metric impact

Concurrency Resource pressure
Transformation Coarse-grained Fine-grained Operator | Storage Data
parallelism parallelism availability
Bit-level transformation
Bit-level operator specialization n/a n/a d A
Bit-width narrowing n/a n/a 1
Floating- to fixed-point conversion n/a n/a J
Instruction-level transformation
OSR na l | {
THR wa T T — T
Code motion (hoisting/sinking) n/a T
Loop transformation
Unrolling — T T T T
Tiling — — — — ¢
Fusion J T T T
Distribution T d d 1
Function transformations
Inlining $ T T T —
Outlining T d 1 1 —
Recursive Functions into iteration n/a n/a — J —

106 4 Code Transformations

Table 4.6 Applicability and potential for performance impact of compilation techniques to fine-
and coarse-grained reconfigurable architectures

Architecture granularity

Transformation Coarse-grained Fine-grained

Bit-level transformations

Bit-level operator specialization . cccee
Bit-width narrowing o sccce
Floating- to fixed-point conversion ooe cccee

Instruction-level transformations

OSR (Operator strength reduction) o TYYYYS
THR (tree-height reduction) ecce eccce
Code motion (hoisting/sinking) cocce sccce

Loop transformations

Unrolling cocce sccee
Tiling eccee sccce
Fusion eccee socce
Distribution cocce coce

Function transformations

lnlining [XTYY] (YY)
Outlining oo oo
Recursive to iteration conversion ecoee oo

of code transformations and a set of qualitative evaluation metrics compilers can
use to gage the application of these transformations. In this table we describe two
concurrency metrics, coarse-grained parallelism and fine-grained parallelism. For
each transformation we qualitatively represent the impact either as positive (as an
increase of the metric represented by the symbol 1) or as negative (as a decrease
of the metric represented by the symbol |), or even as neutral when no significant
impact is, typically, observed.

In this description, we have indicated as nonapplicable (n/a) the impact of the
bit-level transformations in both the coarse- and fine-grained concurrency as these
transformations tend to eliminate resources in the form of less bit-width required,
and tend to change little the nature of the operations.

Finally, we present in Table 4.6 the applicability of each of the techniques de-
scribed in this chapter as the potential for performance impact when targeting either
coarse- or fine-grained reconfigurable architectures. In this table a high applicabil-
ity, meaning that there is potentially a high impact on the transformed code for that
target architecture, is indicated by five bullets whereas a very low impact is indi-
cated by a single bullet. While it is evident that loop transformations are equally

4.7 Summary 107

applicable in both classes of reconfigurable architectures, the gains in fine-grained
reconfigurable architectures are possibly larger than in coarse-grained architectures
as fine-grained architectures are more sensitive to variations of the input program
specification. For example, the bit-level transformations are a better match to fine-
grained reconfigurable architectures.

4.7 Summary

In this chapter we described code transformations used when mapping computa-
tions to reconfigurable architectures, illustrating the application of these transforma-
tions for specific source code examples and generic hardware implementations. We
categorized and described various code transformations, respectively, as bit-level
optimizations, conversions between data representations, instruction-level transfor-
mations, loop-level and data-oriented transformations, and finally function-level
transformations. As with many source code transformations used in the context of
compilation and hardware synthesis, they interact, in many cases, synergetically. We
addressed this interaction by organizing the transformations described here in terms
of their impact on generic architectural performance metrics such as operator, stor-
age, and bandwidth pressure. In addition, and given that different transformations
expose different levels of concurrency, some transformations are more suitable to
fine-grained than to coarse-grained reconfigurable architectures. The extraordinary
variety of choices of transformations and their application sequences pose a huge
challenge for any effective compiler and synthesis tools for contemporary and fu-
ture reconfigurable architectures.

Chapter 5
Mapping and Execution Optimizations

This chapter describes important aspects related to the mapping of computations
to reconfigurable architectures. The inherently spatial nature of these architectures,
their heterogeneity and the invariable limitations of its physical resources, makes
this mapping an extremely challenging task. Compilers and tools must judiciously
balance the use of different kinds of resources in space and time, engaging in al-
gorithmic and mapping techniques similar to the ones used in the context of low-
level hardware synthesis, albeit with mapping choices that can be leveraged at much
higher levels of abstraction.

We begin this chapter with control-flow mapping techniques enabled by the spa-
tial nature of the target reconfigurable architectures. Next, we address spatial and
temporal partitioning of computations within a single or multiple devices, respec-
tively, followed by high-level techniques to map scalar variables and operations to
hardware resources. We then describe memory mapping techniques for high-level
data abstractions such as multidimensional arrays or data streams. Finally, and given
their importance, we describe pipelining execution schemes at either fine- or coarse-
grained levels.

5.1 Hardware Execution Techniques

The natural parallelism in many reconfigurable architectures allows them to exploit
various sources of concurrency, either by parallel execution of independent oper-
ations, or by the speculative execution of multiple control-flow branches. While
these techniques are also exploited in traditional architectures for increased perfor-
mance, reconfigurable architectures offer the additional possibility of customization
of the parallel execution by defining the number, and structure, of each of the par-
allel execution units, thus better matching the specific needs of the computation at
hand.

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 109
DOI 10.1007/978-0-387-09671-1_5,
© Springer Science+Business Media LLC 2009

110 5 Mapping and Execution Optimizations

5.1.1 Instruction-Level Parallelism

The ability of reconfigurable architectures to implement multiple hardware data-
paths and control units allows them to execute multiple instructions in a truly
concurrent fashion. A compiler uncovers these opportunities for instruction-level
parallelism (ILP) by data-dependence analysis [26] commonly at two levels, re-
spectively, at a fine level within each statement and at a coarse-level across multiple
statements.

At a fine level of granularity, the compiler examines a sequence of high-level pro-
gram constructs, such as statements, to determine which operations or instructions
in each statement can be safely executed in parallel. It then schedules these instruc-
tions onto different execution units for increased performance. Figure 5.1 illustrates
a simple example where a compiler exploits concurrency between the operations of
a given statement for a reconfigurable architecture with two nonhomogeneous exe-
cution units, respectively, FUL and FU2. For the statement depicted in Fig. 5.1a, the
compiler uncovers the data-flow graph (DFG) depicted in Fig. 5.1b and then sched-
ules the execution of the operations in this DFG onto the two functional units (FUs).
This execution schedule must respect the data dependences between the operations

FU1 FU2
d = (c1*a + ¢c2*b + ¢c3*c)/3; =] o
cs1
@
(b]
| cs2

]
Y l|_, cs3

L+] [
l__l
. |
I
csb
| d |

(b) ()

Fig. 5.1 Example of mapping: (a) single-statement source code; (b) data-flow graph; (c¢) possible
scheduling organized in control steps (cs)

5.1 Hardware Execution Techniques 111

as well as the availability of FUs. For this specific example, we assume that all the
operations execute in a single clock cycle and execution unit FU1 cannot handle ei-
ther division or multiplication operations. Under these FU constraints the schedule
of the execution is five clock cycles long as depicted in Fig. 5.1c.

At a higher level of granularity, the compiler can also exploit ILP across multi-
ple statements, possibly inside the same basic block,! thus expanding the range of
instructions that it can schedule for parallel execution. When considering the var-
ious statements, the compiler will again rely on the two basic constraints of data
dependence between instructions and the availability of FUs.

A common strategy for a compiler to increase its ability to uncover ILP op-
portunities relies on loop transformations, most notably, loop unrolling. With loop
unrolling, a compiler creates a long sequence of statements in the body of the loop
corresponding to the execution of successive loop iterations, thereby increasing the
likelihood of finding data independent instructions.

Figure 5.2 illustrates the application of loop unrolling for a loop with a single
statement in its body. The original loop is depicted in Fig. 5.2a, which is then ex-
ecuted using a simple schedule as depicted in Fig.5.2d. This schedule reveals no
opportunities for exploiting ILP due to the data dependency imposed by the ac-
cumulation in the sum scalar variable. By fully unrolling this loop, the compiler

sum = 0; x0=x[0];
sum = 0; sum += x[0]*x[0]; x1=x[1];
for(i=0; i<4; i++) { sum += x[1]*x[1]; x2=x[2];
sum += x[i]*x[i]; sum += x[2]*x[2]; x3=x[3];
} sum += X[3]*x[3]; sum = x0*x0 + x1*x1 + x2*x2 + x3*x3;
(a) (b) ()

sum

(d) (e)

Fig. 5.2 Applying loop unrolling to exploit ILP: (a) original code; (b) code after loop unrolling;
(c) code after scalar replacement (see Sect. 4.4.3); (d—e) possible schedulings for hardware imple-
mentations

" A basic block [9] is the maximal sequence of program instructions with a single entry and a
single exit point.

112 5 Mapping and Execution Optimizations

creates a sequence of four statements as depicted in Fig.5.2b, enabling it to ex-
ploit a second transformation — associativity. By rearranging the accumulation as
depicted in Fig.5.2c, the compiler can now aggressively exploit ILP by perform-
ing the various, memory read accesses, multiplications, and additions concurrently
as depicted in Fig. 5.2e and only subject to the availability of FUs. After unrolling
the overall schedule length is now only four clock cycles, whereas the schedule de-
picted in Fig.5.2d would yield, respectively, 4 x 4 and nine clock cycles, for the
entire execution of the loop without and with loop pipelining.

This example illustrates the performance gains a compiler may attain by exploit-
ing the potential of ILP. In addition to loop unrolling, compilers can also leverage
a wealth of data-dependence analyses developed in the context of automatic paral-
lelizing compilation for shared and distributed memory multiprocessors [12]. These
dependence analyses focus on loop-based computations that manipulate array vari-
ables [26], allowing compilers to uncover concurrency at coarser granularity levels
in what is commonly known as loop-level parallelism or task-level parallelism. The
application of these analyses techniques in the context of reconfigurable architec-
tures is entirely analogous to their use in multiprocessors, with the added benefit
of exploiting FU and interconnection customizations, as well as native support for
high levels of customized parallelism and pipelining.

5.1.2 Speculative Execution

Reconfigurable architectures can support the speculative execution of instructions
by allowing FUs to concurrently execute mutually exclusive control-flow computa-
tion branches. If the control flow of a speculatively executed instruction is valid, the
outcome of the instruction is committed as part of the state of the execution. Oth-
erwise, the results of the execution of the mis-speculated instructions are discarded
along with possible state restoring.

High-level control-flow constructs, such as if-then-else statements, present com-
pilers with common scenarios for exploiting speculative execution techniques. As
illustrated in Fig. 5.3, the compiler can use available resources to concurrently exe-
cute, in spatially distinct FUs, the instructions corresponding to the two control-flow
branches of an if-then-else construct. It then uses hardware multiplexers to select
which of the outcomes of the two branches is to be selected to update the storage
values involved in the execution. As depicted in Fig. 5.3b, the result of the evalu-
ation of the condition (£<10) dictates which of the computed values at the two
inputs of the multiplexer will be assigned to the a variable.

Hardware speculation using spatial execution is particularly beneficial when the
instructions are free of side-effects and there are ample hardware resources avail-
able. When the hardware resources are scarce, the hardware implementation may
need to share hardware operators between the speculative execution paths, thus
reducing the performance advantages of speculative execution.

5.1 Hardware Execution Techniques 113

f 10 b c d e d c
AT TR S S A I
L= Lx J[x| [x]
S |
61]
a=b*c+d*e;
else \?—L—‘
a=d*c+e; MUX
@) (b) @

Fig. 5.3 Concurrent evaluation of branches: (a) source code; (b) data-path

% [o] o
sT__| Ra <« ali]; Rb « bil;

if(ali] > N) | - 2
iajli i . s
b[i] = 1; Ezziﬂbme " <—rﬁ | bl |

false

true s4
+_‘ b[i]
s3 s4 b[i] « Rb;
s3

(a) (b) (c)

Fig. 5.4 Speculative execution of operations with side-effects and the restore mechanism when in
the presence of mis-speculation: (a) simple example; (b) state transition graph; (c) a schedule of
the operations in the data-path

As with traditional architectures, speculation can also lead to an increase in mem-
ory accesses when the speculatively executed instructions involve memory opera-
tions. While this increase can be considered benign in the case of memory read
operations, the presence of memory write operations is more problematic. Although
the latency of a memory write operation can be hidden by the use of a write buffer,
the penalty of having to recover from a mis-speculated memory write operation is
substantial. The overwritten value would have to be restored, for which the original
value would need to have been initially read. Figure 5.4 illustrates this scenario.

For instructions with side-effects, speculation also raises the issue of implemen-
tation correctness. A speculative execution can execute an instruction that raises an
exception, such as an arithmetic exception or a memory access violation, where no
exception ever existed in the nonspeculative variant of the execution. A common
approach to deal with this issue is for the compiler to generate code that records, for
the speculatively executed instructions, any possible internal exceptions, for exam-
ple via an additional hardware bit-register. Should the exception correspond to a le-
gitimately executed instruction, the hardware will handle it, discarding it otherwise.

114 5 Mapping and Execution Optimizations

5.1.3 Predication and if-conversion

The spatial nature of reconfigurable architectures allows compilers to exploit pred-
icated execution techniques as hardware implementations concurrently execute
multiple flows of control from disjoint control-flow paths in the input program.
Rather than allowing these flows to execute speculatively, an architecture can use
predicates associated with each control-flow path to enable or disable the corre-
sponding operators from producing output results [32].

To enable this execution technique, compilers can rely on the if-conversion trans-
formation [11]. This transformation associates to instructions in a control-flow a
predicate that reflects the condition under which the instructions should be exe-
cuted. In traditional processors branch instructions are eliminated and the instruc-
tions converted to predicated instructions, thus avoiding common pipelining stall
issues related to mispredicted branches.

In reconfigurable architectures, if-conversion and predication can be naturally
exploited by translating the input control-flow graph (CFG) representation of the
computation into a data-flow representation’ amenable to direct hardware im-
plementation. Mutually exclusive updates to variables are naturally captured by
hardware multiplexers whose selection logic determines at run-time the particular
variable definition. In architectures where variables can be bound to discrete and
spatially distributed registers, the hardware corresponding to the computation of
mutually exclusive data-flow branches proceeds concurrently without the concern
for the updates to the registers in case some of them correspond to invalid predi-
cates. In some instances, it is even possible for the implementation to omit some
predicates as operands and results are stored in local registers or simply translated
to wire connections between operations.

The logic to calculate predicates and to select between different inputs in each
multiplexer and/or activate the outcomes of specific operators is known as program
decision logic [22]. Fine-grained reconfigurable architectures can directly support
the implementation of predication by directly implementing as hardware circuits the
program decision logic. The definition of the program decision logic may rely on
boolean expression minimization to reduce the amount of operations required [22].
Although the impact of this minimization may not be significant for fine-grained
architectures, for coarse-grained architectures, where each logic operation typi-
cally requires an FU, the minimization of the program decision logic may thus
lead to a substantial reduction of the number of required resources. When target-
ing coarse-grained architectures, however, the transformations described here are
only employed if the architecture includes support for predicated execution or when
side-effect-free operations in branches do not require predication.

A key aspect in the implementation of this technique is the determination of
the program selection points for the insertion of predicates associated with each
updated program variable. As with software predication, this information is easily
determined by transforming the input program into an SSA-form [85], where the
selection points are explicitly represented as ¢-function statements.

2 Not to be confused here with a data-flow architecture execution.

5.1 Hardware Execution Techniques

1/ assignments to variables j, output,
/f outputBuffer, and delta

if(bufferstep == 1) {

if-conversion

// assignments to variables j, output,
// outputBuffer, and delta

p1 = bufferstep == 1;

output = expri(delta);
}else {

outDatal[j] = expr2(delta, outputBuffer);

i+

}

[p1]: output = expri(delta);
['p1]: outData[j] = expr2(delta, outputBuffer);
p1: jo+;

(@
1 [sshoomersen]

(¢) ,

/] assignments to variables j1, output1,
// outputBuffer1, and delta1

if(bufferstep1 == 1) {
output2 = expri(deltal);

}else {
outData[j1] = expr2(delta1, outputBuffer1);
j2=j1+1;

i3 =9G1,J2);
output3 = ¢(output2, output1);

/] assignments to variables j1, output1,
// outputBuffer1, and delta1

p1 = bufferstep1 == 1;

[p1]: output2 = expri(deltal);

['p1]: outData[j1] = expr2(delta1, outputBuffer1);
['p1]: j2=j1+1;

[p1, 1p1]: 3 = ¢(1, j2);

[p1, !p1]: output3 = ¢(output2, output1);

(b)

(d)

Fig. 5.5 From an if-then-else statement to SSA form and predicates: (a) original source code;
(b) code after SSA conversion; (¢) code after if-conversion; (d) code after if-conversion and SSA
conversion

In Fig.5.5, we illustrate the application of if-conversion and predication exe-
cution using an SSA representation for an example computation. For the code in
Fig.5.5a, the compiler can generate a control unit directly reflecting the structure
of the control-flow graph (CFG) of the code. The CFG ensures the activation of
the operations in the branches of the if-then-else structures as those branches are
also reflected in the control unit. A more aggressive implementation of this simple
scheme uses a control unit based on the latencies of regions of instructions (e.g.,
the hyperblock [200]). In this case, the control unit orchestrates the execution of the
regions of code relying on a fully predicated SSA representation as depicted at the
bottom of Fig.5.5d. Figure 5.6a depicts a straightforward translation to hardware
of this predicated SSA representation for the example code in Fig. 5.5d. A relaxed
implementation of predicated execution is depicted in Fig. 5.6b which relies on the
fact that some updates to registers are local and will not be used if the corresponding
predicates are false.

In data-driven reconfigurable architectures, such as the XPP, the predicated
SSA representation forms the base for the mapping of predicates to assignments
to variables as the predicates (guard or selection signals) are associated to hard-
ware events that enable/disable the operations in each PE. In architectures, where
each PE includes a data-path and a control unit, however, the predicates must be

116 5 Mapping and Execution Optimizations

bufferstep1 1

p1
deltal output1 outputBuffer1 j1
Ip1
A
(a)
output3
bufferstep1 1 deltal output! outputBuffer1 j1
| |
| Ea | oot [| | [[owr [!
INC
p1 v
output2 data address
g l il N j2
| J
' 3 MUX L\ MUX
p1 i MEM
(b) output3 i3

Fig. 5.6 Possible data-path implementations: (a) considering full predication; (b) considering par-
tial predication

routed through the control unit, so that they can generate the signals needed to en-
able/disable operations (e.g., writes to memory).

Besides if-conversion, other techniques can transform control-flow constructs to
simple data-flow representations suitable to be mapped to hardware. For instance,
the statement if ((a&l)==1)a++; can be implemented by adding O to a and
connecting the least significant bit of a to the carry-in (cin) of the adder as depicted
in Fig. 5.7. Although seldom applicable, the resource savings of this transformation
are substantial.

5.1.4 Multi Tasking

By supporting spatial computations, reconfigurable architectures allow multiple
flows of control to exist simultaneously as a form of spatial multitasking. A form of

5.1 Hardware Execution Techniques 117

If((a & 1) == 1) a++,

an-1...a414p
1

Fig. 5.8 Illustrative implementation of hardware fork and join synchronization

fine-grained multitasking with limited scope,® occurs when a hardware implemen-
tation evaluates in parallel, using distinct resources, disjoint branches of control-
flow programming constructs. A coarse-grained multitasking, with a much wider
scope, occurs when the architecture implements data-path structures that execute
sequences of instructions or tasks with much longer execution spans. These tasks
can correspond to high-level concurrent programming constructs such as parallel
threads defined as part of the input language semantics (e.g., as in Java) or uncov-
ered by the compiler using sophisticated data-dependence analyses [26]. Distinct
resources are allocated to each task and synchronization of the many flows of con-
trol can be achieved by hardware fork/join points. In a direct implementation of this
synchronization, illustrated in Fig. 5.8, a fork point consists of a wire signal activat-
ing each of the threads. A join point is more elaborate as it needs to capture in time
the fact that two or more activities have completed.

In multitasking, the access to shared resources, e.g., access to shared memory
structures, either internal or external, must be subject to arbitration, unless a prede-
fined scheduling of accesses to such resources is imposed. In addition, the defini-
tion of a controller for multitasking execution schemes poses serious challenges to
a compiler, given the many possible execution interleaving scenarios between tasks
(see, e.g., the work presented by Lakshminarayana et al. in the context of concurrent

3 This form of fine-grained multitasking can be see as a form of multithreading.

118 5 Mapping and Execution Optimizations

execution of distinct loops [184]). An alternative approach is to rely on the notion of
tokens and allow shared resources to manage the requests submitted by the various
tasks. The roken allows the controllers of the shared resources to identify to which
task a specific request should be directed to. Each task has its own controller which
now needs only to coordinate the submission of requests to the shared resources in
the pursue of the completion of its computation. This conceptually elegant approach
has been used in the context of pipelined multitasking execution of data-dependent
loops where different iterations that may have very distinct execution pathsaccess
shared resources [298].

In the context of high-level synthesis for ASICs, there have been various efforts
focusing on the generation of specific hardware implementations able to execute
concurrently loops without dependences. Lakshminarayana et al. [184] describe a
static scheduling algorithm that generates control units to coordinate the parallel
execution of such concurrent loops. Ouaiss et al. [232] present an arbitration scheme
to deal with concurrent accesses to the same hardware resources at run-time.

5.2 Partitioning

Partitioning for reconfigurable architectures deals fundamentally with two differ-
ent problems, respectively, temporal partitioning and spatial partitioning. Temporal
partitioning deals with the time multiplexing of hardware resources for distinct com-
putations, whereas spatial partitioning splits a computation between multiple hard-
ware resources. Figure 5.9 depicts an example illustrating the difference between
spatial and temporal partitioning for a computation represented by its DFG where
nodes denote either fine-grained instructions or coarse-grained tasks. The partitions
depicted in Fig. 5.9b correspond to a feasible spatial partitioning but an infeasible

(a) (b) (c)

Fig. 5.9 Examples of partitions where the graphs represent a DFG or a task graph: (a) original
graph; (b) possible spatial partitions but impossible temporal partitions; (¢) possible spatial and
temporal partitions

5.2 Partitioning 119

temporal partitioning, as the partition in the shaded region is nonconvex.* The par-
titions depicted in Fig. 5.9¢c, however, correspond to a feasible spatial and temporal
partitioning.

These two forms of partitioning may be performed on computations described ei-
ther at a structural or at a behavioral level, being the latter also known as functional
partitioning. Given the focus of this book on compilation for high-level computa-
tion descriptions, we describe in this section the main partitioning techniques for
behavioral descriptions.

5.2.1 Temporal Partitioning

There are two possibilities to map computations requiring a number of hardware re-
sources larger than the available resources in the target reconfigurable architecture:
resource sharing and temporal partitioning. Temporal partitioning exploits the reuse
of hardware resources by distinct configurations in a time-multiplexing fashion. In
cases where the original computations cannot be implemented as a single partition,
compilers may aggressively exploit resource sharing within or across partitions.

Although the goal of temporal partitioning is to split the input computation so
that each partition meets the target architecture hardware resource limitations, this
technique offers other possible advantages. First, and foremost, it enables the use of
smaller area/devices (with lower-cost) to implement complex applications. Second,
by overlapping configuration and computation phases of subsequent hardware con-
figurations, the implementation may even be able to amortize configuration times
across partitions. Third, by partitioning computations in time, each of the imple-
mentations is simpler, possibly leading to better overall performance/power/energy
results. Lastly, it allows more aggressive hardware implementations as each parti-
tion can exploit all the available hardware resources, rather than competing with
all other partitions for the same resources. This individual partition optimization,
leveraging the many code transformations and ignoring reconfiguration costs, can
even lead to overall better performance implementations, than an implementation
where the computation is aggregated in a single partition constrained to the physical
hardware resources available.

While the minimization of the number of overall partitions is important, and
often the most significant metric, the minimization of the data that needs to be com-
municated and thus saved between the execution of subsequent partitions is also
important, as it directly relates to the amount of required temporary storage and
communication costs during execution. The example in Fig. 5.10 illustrates two dif-
ferent temporal partitions with distinct amount of required data to be communicated,
given the different number of edges in each computation’s data-flow graph bisected
by the partition cuts.

4 A convex partition does not have data-flow edges that momentarily traverse nodes outside it.

120 5 Mapping and Execution Optimizations

ui

Fig. 5.10 Temporal partitioning examples with different communications costs

Temporal partitioning has been traditionally geared for two main applications,
namely, rapid prototyping of large hardware circuits and program compilation. For
rapid prototyping of hardware circuits, temporal partitioning methods (e.g., [196,
309]) have used net-list representations of circuits and can thus be considered a
gate-level structural temporal partitioning. When compiling programs, a common
internal representation (IR) is used for temporal and spatial partitioning which re-
lies on the use of task graphs, control/data-flow graphs (CDFGs) or data-flow graphs

5.2 Partitioning 121

(DFGs). For any of these representations, temporal partitioning amounts to its de-
composition into (mostly) disjoint parts attempting to minimize specific perfor-
mance metrics subject to the underlying architecture resources constraints. Given
a temporal partition, the compiler is still responsible for scheduling the execution
of the various partitions such that the data and control dependences of the original
representations are respected.

The application of temporal partitioning in high-level compilation was possibly
first described in the literature by Gokhale and Marks [124]. Their compiler per-
formed temporal partitioning at source code function boundaries thus mapping one
function to a single configuration. The users resorted to function encapsulation to
directly control the application of temporal partitioning. Only recently was tempo-
ral partitioning at the operation level transparently explored in compilers such as the
Nenya [65] and the XPP-VC [68] compilers.

The similarities between High-Level Synthesis (HLS) scheduling and tempo-
ral partitioning have allowed researchers to leverage a wealth of approaches from
scheduling to temporal partitioning of computations described at behavioral level
(e.g., [230]). A common approach in temporal partitioning makes extensive use of
simulated annealing techniques with diverse objective function minimization [176].
This algorithmic approach, however, has been deemed very computationally expen-
sive despite its proven robustness.

As a result, researchers have developed newer temporal partitioning algorithms
by augmenting known HLS scheduling algorithms, e.g., list-scheduling, relying on
greedy algorithmic solutions for implementation expediency. Naturally, the simplest
approaches have neither exploited the sharing of FUs nor the ability of architectures
to support partial, dynamic reconfiguration. Purna and Bhatia [248] developed an
algorithm that uses the information from an As-Soon-As-Possible (ASAP) schedul-
ing of the computation’s DFG to greedily assign operations to each partition. The
selection of operations in each scheduling level is arbitrary and the algorithm creates
a new temporal partition when the current partition exceeds the available resources.
This approach neither considers communication costs between distinct partitions
nor resource sharing. A refinement of this basic approach is described by Takayama
et al. [302] where nodes are selected to be included in a temporal partition by de-
creasing communication costs for the same scheduling level. The work by Cardoso
and Neto [64] considers both the latency of each tentative temporal partition and
the communication costs among partitions. Their algorithm is an extension to list-
scheduling that greedily chooses nodes for each partition attempting to minimize
the overall execution time. Lastly, the work by Vasilko and Alt-Boudaoud [315]
presents a heuristic partitioning algorithm based on list-scheduling taking into ac-
count partial and dynamic reconfiguration.

A very distinct algorithmic approach to this problem has been pursued by other
authors. Ouaiss et al. [230] and Kaul and Vemuri [169] formulated temporal parti-
tioning as a 0/1 nonlinear programming, and then into an integer linear program-
ming (ILP) problem. They then use an integer linear programming solver to derive
a feasible temporal partitioning solution. Due to the long execution times of the
ILP solvers, however, their approach is only practical for small problem instances,

122 5 Mapping and Execution Optimizations

relying on heuristics for larger instances [170]. In other work authors have exploited
loop fission to split the computations in the body of a loop into distinct loops, thus
allowing them to be mapped to the target architecture as each of them now required
less resources [171]. Given the typical large number of partitioning options, authors
have developed design-space exploration techniques, using search heuristics, to de-
rive good overall solutions. This approach, akin to techniques used in HLS, relies
on the description of many implementation variants of each computation and on the
aggregation of nodes in the DFG (named tasks), for various resource requirements
and performance characteristics. For instance, one task can have an implementation
variant using three adders and two multipliers with a specific latency while another
variant uses only one adder and one multiplier. Despite its modularity and the ability
to generate many combinations of partitions with many degrees of resource sharing,
this approach is still time-consuming and lacks a global algorithmic view, prevent-
ing it from deriving optimal partitions.

Minimizing the number of temporal partitions is a very desirable goal given
the high reconfiguration costs of current reconfigurable architectures. To this effect
Pandey and Vemuri [238] describe a force-directed list-scheduling algorithm that
simultaneously considers resource sharing and temporal partitioning. The algorithm
attempts to minimize the overall execution time, exploring a trade-off between the
number of partitions and sharing of FUs. The algorithm, however, makes decisions
based exclusively on local partition knowledge and thus lacks a global partition-
ing view. Cardoso [63] describes an enhanced algorithm that combines resource
sharing with temporal partitioning. This algorithm derives very good temporal par-
titioning solutions using a greedy approach, while maintaining a global view of the
partitions during the steps of assignment of operations to partitions and resource
sharing.

The application of loop transformations poses a set of challenges for temporal
partitioning algorithms. Transformations that aim at increasing the overall compu-
tation’s ILP by the increase in the number of operations associated with each loop it-
eration lead to direct implementation that exceeds the available hardware resources.
To cope with this trend, a compiler can apply two basic loop transformations, re-
spectively, loop distribution and loop dissevering.

Using loop distribution, the compiler partitions a loop into several smaller loops,
each of which does not exceed the available hardware resources. Although simple,
this transformation may require additional memory to store the values of variables
across the execution of the two newly formed loops. Figure 5.11 illustrates this issue
where the compiler needs to convert the variable s into the array s_aux (see scalar
expansion in Sect.4.4.4) to save the various values computed at each iteration of
the i loop. This loop transformation is thus limited to contexts where the distribu-
tion can be applied without violating loop-carried data dependences in the original
loop.

Loop dissevering [68] partitions the body of the loop into a set of disjoint con-
figurations, and structures the execution of the loop by executing sequences of these
configurations as depicted in Fig. 5.12b. At run-time, each configuration defined by
the temporal partitioning of the loop body is activated (e.g., by context-switching

5.2 Partitioning 123

int s_aux[N];

ints;

for(i=0; i<N; i++) { o

for(i=0; i<N; i++) { PR . . S
s_aux][i] = expr1; \Conflguratlon Q
s=exprl;’ el } ~—

— T~ 1

WSS for(i=0; i<N; i++) { e
e =s_auil < Configuration 2>

} -~

stmt; } £

stmt;

Fig. 5.11 Loop splitting across different temporal partitions using loop distribution (the arrow
indicates where the loop is partitioned)

inti;

int comm[2]; Config. 1
i=0; ’ -
comm([0] = i;
e) lab1: i = comm[Q]; @
for(i=0; i<N; i++){ if (i >= N) goto lab2; Config. 2

'.s": expri; ”\/\ gomm[ﬂ =expri; @
—>
.. =S..; \/—\ ...=comm[1]...;

! = commio} N (CITDRCITT>
stmt;

comml0] = ++i;
goto lab1;

lab2: stmt; .
Config. 4

(@) (b) (c)

Fig. 5.12 Loop splitting across different temporal partitions using loop dissevering: (a) original
source code arrows show where the loop is partitioned; (b) transformed code with the statements re-
quiring the communication of scalar values between configurations; (¢) the reconfiguration control-
flow graph

between configuration planes or by loading the configuration data from a memory)
on demand, and executed using the state of the variables the loop manipulates. The
execution is supported by a configuration controller in the architecture [31], and
guided by a configuration control graph as illustrated in Fig.5.12c. As the config-
urations execute sequentially and respecting the original loop execution order, this
transformation can be applied to any loop, even in the presence of arbitrary data
dependences.

124 5 Mapping and Execution Optimizations

While reconfiguration times are almost negligible for existing coarse-grained
reconfigurable architecture, the application of temporal partitioning techniques
that extensively rely on reconfiguration is seriously limited for currently available
fine-grained reconfigurable architectures such as FPGAs.® To overcome this seri-
ous limitation, researchers developed temporal partitioning algorithms aware of the
pipelining of reconfiguration and execution of consecutive temporal partitions [119].
Alternatively, the compiler can divide an FPGA into two sections alternating the ex-
ecution of a temporal partition in one section with the simultaneous reconfiguration
of the other section.

5.2.2 Spatial Partitioning

Compilers for reconfigurable architectures use spatial partitioning algorithms when
a computation requires more hardware resources than any individual RPU can pro-
vide. Spatial partitioning splits a computation into a set of disjoint partitions each
of which is then mapped across the RPUs in the target reconfigurable architecture.
While spatial partitioning is not constrained by inter-partition dependences as all
partitions co-exist in time, it needs, however, to take into account interconnection
resource constraints such as inter-device or inter-RPU pins and bus widths.

Partitioning algorithms thus aim at minimizing one fundamental metric, the num-
ber of communications between partitions, while maximizing the co-location of data
with the computations or operations that manipulate them. The minimization of the
communication costs and the maximization of the co-location of data and compu-
tations promote the generation of reconfigurable computing implementations with
minimal execution time. The minimization of the communication between parti-
tions leads to short interactions and in many instances lower communication buffer
requirements. Finally, data and computation co-location avoid long data accesses to
remote data promoting fast execution schedules.

The combinatorial nature of spatial partitioning as defined by the constrained
partitioning of the computation’s DFG has prompted a wide range of algorith-
mic approaches [266]. Fundamental algorithms rely on graph bi-partitioning [173]
and greedy methods [108] or on multiway partitioning extensions [268]. Other ap-
proaches are based on generic optimization algorithms such as simulated anneal-
ing [176].

Historically, spatial partitioning has been used in early product prototyping
phases to split large hardware circuits, typically defined as VLSI gate-level net-lists,
to allow them to be mapped on the target prototype systems composed of multiple
FPGAs [50,179,314]. In the context of mapping of computations to reconfigurable
architectures, spatial partitioning was, to the best of our knowledge first reported in

5 Devices with multiple on-chip contexts exhibit almost negligible reconfiguration times (e.g., one
clock cycle) for configurations already loaded on-chip as demonstrated by industrial efforts [113].

6 A notable exception is the Time-Multiplexed FPGA developed at Xilinx but never commercial-
ized [309].

5.2 Partitioning 125

the literature by Schmit et al. [273] for computations described in VHDL. Also at
the algorithmic level, Peterson et al. [244] described an approach targeting multi-
ple FPGAs using simulated annealing whereas Lakshmikanthan et al. [183] present
a multi-FPGA partitioning algorithm based on the Fiduccia—Mattheyses recursive
graph-partitioning algorithm. Kerkiz [172] uses basic recursive graph partitioning
algorithms augmented with heuristics such as topological ordering, to partition an
acyclic coarse-grained task graph. The algorithm targets multi-FPGA systems, and
attempts to minimize the number of FPGAs used, while considering the constraints
on the number of pins, and the number of external and internal memories connected
to each FPGA.

The wide range of algorithmic solutions researchers have developed for spa-
tial partitioning underscores the challenging nature of the problem. Specialized
algorithmic solutions geared for the specifics of the target architecture at hand will
continue to play a role in allowing compilers to effectively exploit the hardware
resources at hand. Even with the increasing capacity of FPGA devices, spatial par-
titioning will very likely continue to be an important mapping technique, not only
in the context of multi-FPGA systems, but also when targeting advanced heteroge-
neous embedded and high-performance reconfigurable computing systems.

5.2.3 Illustrative Example

We now illustrate the application of spatial and temporal partitioning to an example.
The target architecture is depicted in Fig. 5.13a and consists of two RPUs, each one
with 150 processing elements (PEs) and two local memories. The architecture has
a central memory and a crossbar interconnecting the RPUs to the two memories.
In this example, we consider the mapping of one application composed by four
tasks (A, B, C, and D) as depicted by its task-level graph in Fig.5.13b. This task
graph defines the dependences between tasks only allowing tasks B and C to execute
concurrently.

We assume that for each task we have characterizations for two design points
corresponding, respectively, to unoptimized and optimized designs considering la-
tency. The unoptimized design has higher latency and uses a minimum number of
PEs and is denoted in this table by NO (nonoptimized case), whereas the optimized
design has minimum latency and is denoted by OPT (optimized case). We further
assume that there are no routing problems and no resource overhead when mapping
each or a combination of tasks to each RPU and that the only resource constraints
are the maximum number of PEs for each RPU.

The costs for each design (latency and number of PEs) are depicted in the table
in Fig.5.13b, revealing that for each task, its minimum-latency implementation
requires the maximum number of PEs and conversely, its minimum-PE imple-
mentation exhibits the maximum latency. As can also be seen in Fig.5.13b, the
maximum latency for the computation considering that all the tasks would fit in
the target architecture is 120 and the minimum latency is 70 clock cycles, excluding
the configuration time.

126 5 Mapping and Execution Optimizations

|MEM 1| |MEM 2| |MEM 3| |MEM 4|

Non-Optimized Optimized
Task (NO) (OPT)
Latency | #PEs | Latency | #PEs
A 30 100 15 150
APU 1 <> RPU 2 B 20 75 15| 150
(150 PEs) [+ 7| (150 PEs) e e
C 15 130 10 250
D 70 120 40 150
>< e total 120 | 425 70| 700
| MEM 5 |
() (b)

@

<? Configuration 1
[Aopr]

Configuration 1
[Anos Brol l
80+20+15+70+ Configuration 2 15+15+40+
l CT, (Borr: Crol > CcT,
Configuration 2 (135+CT)) (70+CT,)
[Cnos Dol l
Configuration 3

[Doprl

(c) (d)

Fig. 5.13 Illustrative example of temporal and spatial partitioning: (a) target architecture; (b) task
graph and table of costs; (c—d) two possible implementations

Figure 5.13c,d depicts two possible implementations of the example computation
after applying temporal and spatial partitioning. In a first implementation, depicted
in Fig. 5.13c, all tasks use the minimal number, requiring only two configurations,
and thus incurring a single (re)configuration cost. In the first configuration the com-
putation executes the unoptimized tasks Ayg and By mapped to each of the two
RPUs. In a second configuration the computation executes the unoptimized task Cyg
and Dyg resulting in an overall execution time of 135+ CT; clock cycles. Here CT;
denotes the aggregate reconfiguration cost of this specific partition which may be
partially hidden when the architecture supports partial and dynamic reconfiguration.

In a second implementation some tasks have been optimized resulting in three
configurations. A first configuration executes the optimized task Agpr entirely occu-
pying one RPU. The second configuration executes the unoptimized task Cyg and
the optimized task Bgpr mapped to distinct RPUs and finally the third configuration
executes the task Dgpr mapped to either RPUs. The overall execution time of this
second implementation is 70 + CT,, possibly faster than the first implementation
depending on the relative values of their reconfiguration costs CT; and CT5.

5.3 Mapping Program Constructs to Resources 127

As can be seen from this example, tasks in different temporal partitions do not
compete for the same hardware resources, allowing the compiler the possibility of
using optimized variants of a task. For this particular example, and because of the
inter-task dependences, the compiler is able to derive temporal and spatial partitions
that, although requiring an additional reconfiguration, may lead to better execution
time. To hide, possibly partially, the cost of this extra reconfiguration, the compiler
could overlap the execution of one RPU while the second RPU was being loaded
with one of the tasks of the second configuration. Data produced by the task in the
first configuration could then be readily accessible to the second configuration by
using the memory shared between the RPUs.

5.3 Mapping Program Constructs to Resources

We now describe basic techniques for the mapping of high-level programming con-
structs and operators to the available hardware resources in the target reconfigurable
architecture. We begin by describing the assignment of scalar variables to registers
followed by the assignment of operations to FUs and the implementation of control-
flow constructs. Next we address resource sharing and conclude with the combined
mapping of multiple instructions to RPUs.

5.3.1 Mapping Scalar Variables to Registers

As with traditional architectures, the mapping of scalar variables to registers invari-
ably relies on a register assignment and a register allocation algorithm. Compilers
must select which of the scalar variables are to be mapped at each point in the exe-
cution of the program to the limited number of registers (see, e.g., [52]). Unlike tra-
ditional architectures, however, registers in reconfigurable architectures can assume
a variety of forms. They can be organized as a traditional centralized or distributed
register file, very limited capacity RAMs or even as spatially distributed discrete
registers.

Although we focus in this section on the mapping of scalar variables to discrete
and spatially distributed registers commonly found in fine-grained reconfigurable
architectures, the techniques described here are equally applicable when targeting
the coarser storage structures of distributed RAMs. Nevertheless, techniques such as
live-range analysis and SSA representation are still the base for the more elaborate
mapping techniques used when targeting reconfigurable architectures.

We can classify the strategies a compiler for reconfigurable architecture uses
when mapping scalar variables to registers into three broad categories.

A first, and very naive, mapping strategy assigns a distinct register to each scalar
variable in the program and includes hardware structures such as multiplexers to
allow the values originating from multiple assignments to update the value of the

128 5 Mapping and Execution Optimizations

-t.1.=b*c;
a=(b*c+d)>>16; a=(t1+d)>>16;

v v v v v v
|REGb | | REGc| | REGd| |REGb| |REGc| | REG |

(a) (b)

Fig. 5.14 Syntax-oriented hardware compilation with register assignment: (a) original source code
and its DFG; (b) inclusion of an auxiliary variable leading to a new register in the DFG

register. This approach, used in the early hardware compilers, ignores the issue of
register allocation entirely. It is extremely wasteful of registers and can, therefore,
only be used when registers are plentiful.

A second mapping strategy assigns a distinct register to each assignment in
the source code, similar to direct mapping of the data-flows associated with each
statement or instruction.’” In this syntax-oriented approach, assignments to vari-
ables define a new clock cycle boundary,® allowing the programmer to control these
boundaries by decomposing/composing the expressions and statements in the source
program. Implicitly these boundaries defined the chaining of operations in each
clock cycle. Figure 5.14a depicts an example of the application of this strategy for
two statements.

A common transformation when using this mapping strategy consists in the elim-
ination of registers by promotion to wires as depicted by the example in Fig. 5.14.
By using liveness analysis [9], the compiler can determine that the variable t 1 is not
used in any subsequent instructions in the program. The register used to store the
value of t 1 is not needed and the implementation may use wires to communicate its

7 In some assignments such as the initialization of scalar variables to zero, common in loop
constructs, the compiler can take advantage of hardware logic reset signals of the flip-flops that
compose a register holding the variables’ values. This optimization is common in fine-grained
reconfigurable architectures as without it the hardware implementation would have to include a
multiplexer to allow the zero value to be written to the register as a regular value.

8 This means that expressions in the right side of a statement are directly implemented as operations
performed in each clock cycle.

5.3 Mapping Program Constructs to Resources 129

value to the input of the adder operator as depicted in Fig. 5.14b. As this transforma-
tion directly impacts the critical path of the hardware located between registers, it is
the role of the scheduling phase to remove (or insert) registers to adjust the attained
clock rate of the overall hardware implementation.

A third and clearly more systematic approach uses an SSA intermediate repre-
sentation that exposes the live ranges of each variable and thus the values that must
be retained in registers. The compiler can convert the SSA to a DFG representa-
tion associating each scalar variable value in the SSA representation to an edge in
the DFG. SSA ¢-functions define join points for the values of variables which are
translated to a multiplexer. As with the previous strategy, the compiler can now rely
on the insight of the scheduling step to insert registers and thus defining the hard-
ware implementation clock rate.

This SSA representation also allows the compiler to easily capture loop carried
dependences via scalar variables as these variables will elicit the inclusion of a
¢-function in the loop header. Each of these variables is assigned to a register in
addition to the other registers used in the hardware implementation of the body of
the loop, determined using any of the other mapping techniques described above. In
addition to these registers, the compiler may also need to insert additional registers
to store the input/output values of operators that share an FU (see Sect. 5.3.4).

As registers are a premium resource, compilers attempt to aggressively reuse
them across multiple uses and whenever the live ranges of the variables mapped
to them allow. In fine-grained reconfigurable architectures, however, this reuse is
seldom justified. To reuse a register in these architectures the hardware implementa-
tion must use additional resources such as multiplexers, which typically overwhelm
the area used in the transformed hardware implementation. For coarse-grained re-
configurable architectures, where the inputs and output of the FUs are commonly
registered and registers are organized as distributed or local register files, sharing
might be naturally captured by the data mapping to register files and subsequent
register allocation algorithms.

5.3.2 Mapping of Operations to FUs

Operations in the input source program are mapped to an FU that supports its exe-
cution either natively, as in the case of coarse-grained architectures, or indirectly by
relying on the instantiation of a hardware operator in a fine-grained architecture.

The mapping of operations to FUs is entirely analogous to the mapping of op-
erators found in common high-level synthesis tools as described in Chap. 3. There
are, however, some transformations compilers perform during the translation of the
high-level input program constructs to their intermediate representation that directly
impact this mapping, namely the use of combined-operations and the selection and
sharing of operators for operations that use various bit-widths.

Given their prevalence in numerically intensive computations, many architec-
tures directly support the execution of combined arithmetic operations such as

130 5 Mapping and Execution Optimizations

multiplication and addition instructions known as mult—-add or mult-acc the
latter accumulating in a special register the value of the multiplication. The com-
piler can therefore reorganize the input computation to expose these operations and
exploit the direct target architecture support for these operations (e.g., the XPP [31]
architecture). A possible downside of this operation combination, and as it increases
the granularity of the computation, is that it reduces the potential for resource shar-
ing among operations (see Sect. 5.3.4).

Many compiler techniques exist for the recognition of basic instruction id-
ioms [9,245] in particular in the context of automatic program vectorization [332].
A common example consists in the recognition and efficient implementation of a
dot-product of two vectors, where the compiler can generate a hardware implemen-
tation that accumulates in a sum variable the consecutive products of the vectors
extensively using the mult-acc instructions.

When the operation’s bit-width requirements exceed the available bit-width
directly supported by the FU, the compiler must decompose the operation into
a sequence of canonical/primitive operations. This decomposition can lead to a
non-negligible impact in the latency and schedule of the computation thus prompt-
ing the compiler to evaluate the cost/benefit of using a wider FU instead, whenever
possible.

The complexity of the mapping of operations to FUs can be aggravated when a
given operation can be assigned to more than one FU type. This is a common sce-
nario in fine-grained reconfigurable architectures when dealing with different imple-
mentations of arithmetic operators with distinct area and latencies. In this context,
compilers resort to mapping heuristics in combination with scheduling analyses.
One such approach uses the fastest FUs for the operations in the critical paths of the
computation and uses FUs with fewer resources, and therefore slower, for operations
in the other paths [65].

There are also mapping opportunities when dealing with program constants, as
are the classic cases of constant multiplier coefficients common in signal process-
ing applications [328]. Individual constants are folded into and propagated to the
implementation of the hardware of the operations that use them. When dealing with
large arrays of constants, however, constants are mapped to discrete registers or to
discrete logic (e.g., implemented using Look-Up Tables (LUTS) in fine-grained re-
configurable architectures) to increase their availability.

5.3.3 Mapping of Selection Structures

The mapping of data selection constructs either arising directly from control-flow
constructs or from the mapping of multiple values in the internal representation of
values (e.g., ¢-functions in SSA) can be implemented in hardware by multiplexers
or by sharing lines/buses accessed via tri-state buffers.

The selection of which implementation variant to choose depends on the gran-
ularity and multiplexer support in the target architecture. When the architecture

5.3 Mapping Program Constructs to Resources 131

includes multiplexer structures of the form N:1 (N inputs to 1 output) can be im-
plemented as a tree of 2 : 1 multiplexers, or by a single N: 1 multiplexer. This use
of multiplexers is, nevertheless, only an efficient solution for small number of data
sources. For larger numbers, and depending on the input/output ratio of the natively
supported multiplexers, the number of multiplexers used can overwhelm the hard-
ware implementation in terms of area and critical path delay. For larger number of
inputs, the use of tri-state connections, when efficiently supported, is therefore a
better solution.

5.3.4 Sharing Functional Units FUs

When mapping operations to one or more FUs, the compiler will have to negotiate
a trade-off between concurrency and FU resource sharing. Although it is possible to
share FU resources in both fine-grained and coarse-grained reconfigurable architec-
tures, the techniques and benefits differ slightly.

In coarse-grained architectures that include generic FUs, such as ALUs that sup-
port different types of operations, the compiler reuses an FU by time-multiplexing
and thus serializing the execution of the operations.

For fine-grained architectures, however, the advantages of FUs sharing are less
clear. While sharing the FUs leads to savings in hardware resources, these savings
are offset by the need to include additional hardware as depicted in the two sharing
scenarios in Fig.5.15. Figure 5.15a depicts a hardware implementation with three
generic operators opl, op2, and op3 and without any resource sharing. Under
the assumption that opl and op?2 are identical, the hardware implementation that
shares these operators is depicted in Fig. 5.15b. Here, the additional hardware mul-
tiplexers are responsible for directing the inputs of each original operations to the
shared unit and selecting the corresponding output values (at the appropriate time)
from the output of the shared unit. Because of the sharing, the hardware implemen-
tation also requires the two output values, labeled u and v to be registered, which
incidentally precludes the chaining of the three operators. Finally, Fig. 5.15¢ depicts
a hardware implementation sharing opl and op3 under the assumption that these
operators are identical. As with the previous example, this hardware implementa-
tion includes not only multiplexers but also output registers for the u and e values.
Lastly, and in addition to the multiplexers and registers, all these hardware designs
that share operators require more sophisticated controllers and scheduling to manage
more control signals and to orchestrate the flow of data through the shared resource.

Compilers can also exploit operator commutative properties, in particular for
arithmetic operators. The compiler can swap the input operands of a shared FU
to increase the commonalities between input operands and thus reduce the number
of multiplexers needed [121].

In some cases, however, resource sharing does not require the use of additional
registers or a more sophisticated controller. As illustrated in Fig.5.16, when two
compatible operations are present in mutually exclusive execution paths arising

132 5 Mapping and Execution Optimizations

|Rega||Regb||Regc||Regd| |Rega| |Regb||Regc| |Regd|

op1 op2

op3

(a
[Rega| [Regb| [Regc][Regd]
op2
_,7 l A A v
sel 43 _MUX X\ _MUX
H I H |
load? -Jws-msmmeeseene - load2

(c)

Fig. 5.15 Hardware implementations of two multiplications: (a) without FU sharing; (b) with FU
sharing for op1/0p2; (¢) with FU sharing for op1/0p3

from control-flow constructs, the same FU can be used. Sharing may, nevertheless,
degrade the critical path delay as is the case in this example.

5.3.5 Combining Instructions for RFUs

Reconfigurable architectures organized as a general-purpose processor tightly
coupled to reconfigurable function units (RFUs) expose compilers to other map-
ping challenges. For these architectures, compilers aim at identifying sequences
of operations which can be mapped to the RFUs as macro-operations, akin to

5.3 Mapping Program Constructs to Resources 133

f 10
If(f<10)
a=b*c+d*e; E b d
else w
a=d*c+e; c
l
(a) X
c d d c d
S AR R i
R x c
|
+ |

r

| L+
S MUX
'
(b) a (c) a

Fig. 5.16 Hardware implementations of a simple example (a): (b) without FU sharing; (c¢) sharing
one multiplier in mutually exclusive execution paths

the compilation techniques used to define instruction-set extensions (ISEs) in
Application-Specific Instruction-Set Processors (ASIP) [41].

Generically, the identification of which operations to aggregate depends on the
characteristics of the target RFUs. For example, the Chimaera architecture RFU
supports operators with up to nine inputs and only one output [152], whereas the
Configurable Compute Accelerator (CCA) [80,156], whose two sample possible ar-
chitectures are depicted in Fig.5.17, can accommodate in each specialized instruc-
tion up to four inputs and up to two outputs. Further constraints of the mapping of
instructions to this particular architecture include a maximum number of predefined
level of operations (four in the examples depicted in Fig. 5.17), where even operator
levels perform logic operations and odd levels perform logic and simple arithmetic
operations, excluding multiplication and division.

When mapping a computation to an RFU in these architectures, the compiler
must invariably engage in a matching between the characteristics of the RFUs and
the computational patterns in the input program. A simple algorithmic approach
consists in the identification of regions of the code, either at the source or inter-
mediate representation levels (e.g., DFG), where the operations can be aggregated
with a specific number of inputs and outputs. Two types of regions, illustrated
in Fig.5.18, have been addressed extensively in the literature, respectively, MISO
(Multiple-Input, Single-Output) and MIMO (Multiple-Input, Multiple-Output) re-
gions [41,117,118,246]. Given the potential exponential time complexity of generic
matching techniques, researchers have developed algorithms that combine greedy
techniques and solution-space exploration heuristics [156].

134 5 Mapping and Execution Optimizations

In_A In_.B In_C In_D In_A In_B In_.C In_D

C ||K?||K?||ﬁ'7||:f7|| %&

e I B
LI I
- —
LI L] LI L]
Out 1 Qut 2 Out1 Out2
(a) (b)

Fig. 5.17 CCA, an example of an RFU: (a) with full crossbars between stages (full interconnec-
tion); (b) with sparse interconnect between stages (sparse interconnection)

f=(a-b) *c;
g=(f+d)>>e;
(a

Fig. 5.18 Region examples: (a) source code; (b) MISO regions; (¢) MIMO region

5.4 Pipelining

This important execution technique aims at increasing the throughput of a compu-
tation by (partially) overlapping the execution of a sequence of operations, subject
to data and/or control dependences [154]. This technique can be exploited, even
simultaneously, at various levels of operation granularity. When applied to indi-
vidual instructions, pipelining splits their execution into a sequence of execution

5.4 Pipelining 135

steps, or microinstructions (e.g., fetching, decoding, and execution), each of which
is executed in a specific clock cycle and by a specific FU. The net result is that at
a given point of time, multiple instructions are being executed, and although their
individual execution latency is unchanged, the overall execution throughput is sub-
stantially increased. For coarse-grained operations, such as the aggregated sequence
of instructions in the execution of an iteration of a loop, the concept of pipelined
execution allows for the overlapped execution of the instructions corresponding to
multiple loop iterations.

Reconfigurable architectures present many opportunities for application-specific
pipelining execution via the customization of memories, FUs, and pipeline inter-
stage connectivity. In the context of arithmetic FUs, authors have developed so-
phisticated pipelined arithmetic operators that can handle multiple, and mixed, data
width formats for floating-point representation [95]. Other authors have also used
the flexibility of fine-grained reconfigurable architectures to define customs exe-
cution pipelines that can implement restricted, yet effective, forms of multithread-
ing, for the pipelined execution of loops [298]. Still, other authors have developed
mixed-grained instruction decomposition of high-level constructs which they then
heavily pipeline using programmable execution units [55].

In the next sections, we describe various forms of pipelined execution enabled
by reconfigurable architectures, for which they are better suited given their ability
for resource customization.

5.4.1 Pipelined Functional and Execution Units

Pipelined FUs are organized internally as a sequence of pipeline stages, each of
which implements a specific function and when composed carries out a complex
operation.

Given the complexity of some arithmetic operations and therefore of the FUs
that implement them, these FUs are commonly pipelined. Floating-point arithmetic
functional units typically include three pipeline stages. In a first stage the implemen-
tation normalizes the exponents of the two input numbers with the corresponding
realignment of the mantissa(s). A second stage performs the core operation (e.g., a
multiplication or addition of the mantissas) in itself also using pipelined execution
techniques. A third and last stage normalizes the result.

A variant of the implementation of pipelined arithmetic FUs can use serial arith-
metic [188, 239] or implementation techniques similar to bit-slicing [214] as de-
scribed recently by Maruyama and Hoshino [202]. In this approach, the compiler
decomposes arithmetic operations as micro-operations over sets of k bits to increase
pipelining throughput. The slicing also promotes operation chaining as the least sig-
nificant k bits of the result of an operation can be used by the next operation without
waiting for the completion of the computation of the entire result.

An approach that allows compilers to efficiently exploit the pipelined capabili-
ties of FUs relies on the use of pipelined execution models. These execution models

136 5 Mapping and Execution Optimizations

! !

pipelineStages

X multDelay X
maxStageDelay

l T

(a) (b)

!

pipelineStages o
X maxStageDelay % pipelineStages
maxStageDelay

} startPropDelay

} endPropDelay } endPropDelay
(c) (d)

Fig. 5.19 Example of pipelining latency models for a multiplier

focus on the description of time-related execution parameters allowing compilers
to perform high-level computation scheduling decisions. Figure 5.19 illustrates a
possible set of simple pipelining execution models for a multiplier FU. In a simple
nonpipelining model, depicted in Fig. 5.19a, an FU can be characterized by its max-
imum delay denoted by multDelay. Figure 5.19b depicts the simplest pipelining
model where each of the pipelineStages stage has a maximum stage delay
of maxStageDelay, thus defining the minimum possible clocking period for the
FU to operate correctly. In this model, the overall multiplication execution time
is thus given by pipelineStages X maxStageDelay. This model also as-
sumes that the multiplier uses all its stages and no chaining with other operations
is allowed either in the first or in the last execution stage. The models depicted
in Figs.5.19¢ and d represent the cases where the FU has delay slots at either
the start and/or at the end stages, denoted, respectively, by startPropDelay
and endPropDelay. For the model in Fig. 5.19c¢, the execution time is given by
(pipelineStages — 1) x maxStageDelay + endPropDelay.

While the models with delay slots are well suited for fine-grained reconfigurable
architectures [285], the model depicted in Fig. 5.19b is commonly used when tar-
geting coarse-grained reconfigurable architectures.

When pipelining the execution of a data-path, a key transformation is the bal-
ancing of the execution paths from its inputs to the outputs. The balancing of the
paths is performed by the insertion of cascades of registers at selected internal data-
path edges such that the latencies from any data-path input of the data-path to any
of its outputs are identical. When all the inputs to a data-path are simultaneously

5.4 Pipelining 137

¥ y y ¥ y ¥
[REGb | [REGc | [REG | | REGb | [REGc | | REG |

a=(b*c+d)*d;

(a) (b)

Fig. 5.20 Example of execution path balancing using registers: (a) original source code and an
implementation with register stages; (b) pipelined implementation after execution path balancing

available, path balancing ensures that all the data-path outputs, corresponding to a
given set of input values, are available at the same clock cycle. With path balancing,
the compiler can schedule the execution of multiple computations over the data-path
by submitting a set of input values at each clock cycle, thereby attaining maximum
computational throughput. Figure 5.20b illustrates the application of path balanc-
ing to the data-path in Fig.5.20a corresponding to the expression in the statement
a= (b*xc+d) xd; . The balancing of this data-path is accomplished by the two regis-
ters (shaded boxes) in the transformed data-path depicted in Fig. 5.20b thus ensuring
that the clock cycle latency from the inputs b, ¢, and d to the output a exhibits the
same latency of three clock cycles.

Another important base transformation, common in any contemporary logic syn-
thesis tool, for pipelining execution techniques is hardware retiming [82]. Retiming
aims at balancing pipeline stage delays by moving registers that define stage bound-
aries either backwards or forwards along the flow of data in the pipeline. In some
cases the movement of one register requires the insertion of additional registers as
is the case when a register moves backwards across a multiple-input operator. Re-
timing does not change the latency of the hardware implementation while enabling
higher clocking rates and is commonly used by logic synthesis tools to enable the
use of pipelining of hard macros (e.g., DSP blocks and embedded multipliers) in
current FPGAs. An example of the addition of a cascade of registers in the output
of a data-path and the use of backwards retiming is illustrated in Fig. 5.21b for the
data-path depicted in Fig. 5.21a.

138 5 Mapping and Execution Optimizations

¥ v ¥ v
[REG | [REG | [REG | [REG | [REG | [REG

a=(b*c+d)>> 16

¥ ¥
| REG | [REG | | REG |

(b)

Fig. 5.21 Example illustrating the use of retiming to create pipelining levels: (a) original data-path
and corresponding source code computation; (b) data-path with retiming registers and backward
movement of two registers

5.4.2 Pipelining Memory Accesses

When supported by the underlying architecture, pipelining of memory accesses is
an important execution technique for reducing the aggregate latency of accessing
memory. Reconfigurable architectures are no exception and several commercial re-
configurable computing boards support this memory access mode [19, 166].

The common support for pipelined memory accesses requires the use of custom
address generation units and custom interfaces to memory interface units. In this
interface, implementations may use registers to stagger the read and write memory
operations requests through a FIFO queue, possibly implemented as a RAM or as a
tapped-delay line of registers. After an initial access latency, data is retrieved from
the memory interface one memory word every k clock cycles. Write operations also
rely on registers or write buffers and, in the absence of data dependences or read-
after-write hazards, have their latencies totally hidden by the memory interface unit.

In Fig.5.22, we illustrate a simple example of the use of pipelined memory ac-
cesses for a vector external product computation, assuming that memory loads and
memory stores require three and two clock cycles, respectively. Figure 5.22b depicts
a schedule considering loop pipelining, without pipelining of memory accesses, ex-
hibiting a throughput of three clock cycles per loop iteration. In comparison the
schedule of the same loop exploiting the pipelining of memory access reveals a
throughput of one clock cycle per loop iteration as depicted in Fig. 5.22(c).

In this context, researchers have developed frameworks exploiting pipelined
memory accesses for streaming-data applications [112] and computations that ac-
cess array variables with very regular access patterns [241]. These frameworks take
advantage of the programmability and customization of the address generation units

5.4 Pipelining 139

cs 1
for(i=0; i<N; i++) { |A[0] B[0] Al0] B[0] ‘
CIi] = Ali] * B[il; B e e e
Al]] B[1]
I N T e A i= 71 |
(a) + + Al2]| B[2]
v L
Al1]| |B[1] +
L L
ciol ctol =
L J kL J
= el
- { | 1 t
A2l B[] Cl2l| cs 8
lem| ||
LA
+
L -
(b) cel (c) cs 12

Fig. 5.22 Pipelining memory accesses: (a) code; (b) scheduling without pipelining memory ac-
cesses; (¢) scheduling with pipelining memory accesses

allowing the controllers to orchestrate the flow of data in and out of the memory in-
terface unit, with seamless integration with the data-path consuming and generating
data values.

5.4.3 Loop Pipelining

Loop pipelining is a technique that aims at reducing the execution time of loops
by overlapping the computation of consecutive loop iterations. The latency of the
iterations of the loop is unchanged, but the rate, or throughput, at which the exe-
cution completes loop iterations is greatly increased, thus substantially improving
the loop execution performance. As with traditional architectures where software
pipelining [222] has been extensively used, loop pipelining is also particularly well
suited for reconfigurable architectures.

The vast majority of loop pipelining compilation efforts for hardware have
focused on the analysis and mapping of “well-structured” loops, i.e., loops that are
perfectly or quasi-perfectly nested, have symbolically constant or even compile-time
constant loop bounds, and manipulate arrays with affine index access functions. For
this class of loops, compilers can rely on powerful analyses to determine the data
dependences between statements of the loop and the possible dependence distances

140 5 Mapping and Execution Optimizations

(measured in terms of number of iterations of each loop in the nest) across which
the dependence occurs. With this information, compilers can be very precise about
which statements to pipeline and when and thus control the pipelined hardware im-
plementation for the loop.

In this description, we distinguish between two loop pipelining strategies,
namely, pipelining of innermost loops and pipelining of an outer loop of a loop
nest. Although both strategies can be exploited when mapping computations to
reconfigurable architectures, only recently has the latter strategy been addressed in
the literature.

With respect to the mapping of inner loops to hardware using pipelined execution
techniques, we can classify the approaches into two broad categories. One category
includes approaches based on pipeline vectorization, whereas a second category
includes approaches based on software pipelining, of which techniques based on
iterative modulo scheduling have been extensively used.

The technique of loop pipelining using pipeline vectorization was originally de-
veloped by Weinhardt and Luk [323] for fine-grained reconfigurable architectures
and later adapted to a coarse-grained reconfigurable architecture [68]. The basic
idea of pipeline vectorization is to build a hardware implementation derived from
the computation’s data-flow graph (DFG) and then repeatedly execute, in a pipelined
fashion, all the iterations of the loop over that hardware implementation. Using this
technique, the compiler applies a wide range of loop transformations to expose the
adequate amount of ILP in the innermost loop of a nest. It then replaces condi-
tionally executed statements in the loop by predicated statements, merging multiple
assignments to variables using selection constructs which will be translated to hard-
ware structures with multiplexers (as described in Sect. 5.3.3). These analyses allow
the compiler to derive the DFG of the body of the loop, which is then translated to
a hardware representation. To this DFG the compiler next inserts feedback registers
to capture loop-carried dependences. Lastly, the compiler generates a hardware im-
plementation for pipelined execution by inserting pipeline registers, and generates a
controller that schedules the execution and the various memory accesses. To reduce
the number of memory accesses per loop iteration, memory values which are reused
in subsequent iterations can be saved in register delay lines [322] (cf. Sect. 4.4.3).

Another approach to inner loop pipelining is based on software pipelining tech-
niques [222], also known in the context of high-level synthesis as loop folding [114].
The basic idea in software pipelining is to find a core schedule (the kernel) for the ex-
ecution of the various operations corresponding to overlapped loop iterations. This
core schedule depends on the specific hardware resources available and defines the
initiation and latency values that characterize the performance of the pipelined exe-
cution. In addition to the core schedule, a software pipelining implementation also
requires a prologue/epilogue that has to be executed before/after the steady-state
execution of the core schedule. A common compiler algorithm for the definition
of the core schedule and the prologue/epilogue sections is the Modulo Scheduling
algorithm [185].

5.4 Pipelining 141

Figure 5.23 depicts an example of the application of software pipelining where
we have omitted the derivation of the DFG of the body of this loop and the
corresponding hardware implementation. In Figs. 5.23a and b we depict the data-
path (FSMD) representation for the execution of the computation without and with
software pipelining, respectively. In this example, we consider that arrays A, B,
and C are mapped to three distinct memories with 1 clock cycle load/store latency.
In this setting, new values of tmpl and tmp2 can be loaded concurrently with
the execution of the tmpl X tmp2 multiplication. With software pipelining the

inttmp1 = A[0] ; // prologue

#define N 512; inttmp2 = B[0] ; // prologue
for(int i=1; i<N; i++) {
int A[N], B[N], C[N]; C[i-1] = tmp1*tmp2;
tmp1 = Ali];
for(int i=0; i<N; i++) { tmp2 = BJi];
CIil = Alil * BIi]; }
} CI[N-1] = tmp1*tmp2; // epilogue

& &
o

So i=1;
MEM1addr=0;
MEM2addr=0;

S1 N ReaMEM1="1";
MEM1addr=!, ReadMEM2="1"
MEM2addr=i;

ReaMEM1="1" I
'Tf‘(?":‘,‘q';"E"F:S';'? $1 | tmp1=MEM1out;
<) 400 S tmp2=MEM2out;
else goto done; @ P l
s2 l S2 MEM3addr=i_1;
tmp1=MEM1out; MEMI_Sin=tmp1"tmp2;
tmp2=MEM2out; WriteMEM3="1";
I MEM1addr=i;
S3 MEM3addr=i: I MEM2addr=i;
i =1, ReaMEM1="1"
WriteMEM3="1"; e e -
MEM3in=tmp1*tmp2; €4 =15 S4
A If(i<N) goto S3;
g else goto S4; done

S3 | tmp1=MEM1out,
tmp2=MEM2out;
i_1=i;
|++;

]
(a) (b)

Fig. 5.23 Loop pipelining example: (a) original code and possible FSMD representation; (b) pos-
sible software pipelining and FSMD representation

142 5 Mapping and Execution Optimizations

implementation requires 2 X N+ 2 clock cycles to execute the N loop iterations,
whereas the nonpipelined implementation requires 3 x N+ 2, yielding an asymptotic
speedup of 1.5.

When mapping the original code example in Fig. 5.23a to a coarse-grained recon-
figurable architecture, in this case the XPP, the compiler can generate the hardware
design as the one depicted in Fig. 5.24b, that like the implementation on fine-grained
reconfigurable architectures does not include a prologue and an epilogue. Instead,
the hardware implementation includes two registers to hold the values of the loop
control variable 1 while the hardware performs, for each iteration, the accesses to
the input data and samples the multiplication result, in a pipeline vectorization ex-
ecution scheme. The nonpipelined hardware implementation for this computation

» rd
| v v
start —»] u
— Addr A —» | MEM MEM
N—> CNT_UP
1 —» | —7—1—> Addr B
0—> END
X
done 4—(]::
A4
L—» Addr C
MEM
> wr
(@) ewr < '
> rd
| v v
start —» U
—» Addr A —» MEM MEM
N —> CNT_UP
1 —» | 1 » AddrB
0 —»
END | | REG |
X
done <—<:l:: | | REG |
Y
—» Addr C
> wr MEM
(b) ewr < I

Fig. 5.24 Possible implementations in an architecture similar to the XPP for the example shown
in the previous figure: (a) without and (b) with loop pipelining

5.4 Pipelining 143

does not use delay-line registers, but relies on the hand-shaking of the various sig-
nals to stall the counter controlling the execution of the iterations of the loop.’

Many compiler implementations of software pipelining rely on the iterative mod-
ulo scheduling (IMS) algorithm [255] when targeting reconfigurable architectures
such as the garpcc [62], the MATCH project [141], the NAPA-C compiler [128],
and the compiler described by Snider [285]. The loop pipelining approach used in
the MATCH compiler also uses a list-scheduling resource constrained algorithm in
order to limit the number of operations active per stage, and the increasing number
of resources needed. Snider’s approach uses an iterative modulo scheduling ver-
sion that considers retiming to optimize the pipelining throughput and exploits the
insertion of pipeline stages between operations. The garpcc [62] targets a reconfig-
urable architecture with a fixed clock period and pipeline intrinsic stages, and does
not require exploitation of the number of stages and retiming optimizations in its
scheduling algorithm.

Despite the differences of implementation of the two main approaches to loop
pipelining, pipeline vectorization and software pipelining, they share the goal of
improving the overall loop execution time. This goal is often, but not always, to
maximize the loop pipelining throughout by reduction of the clock period and the
latency of the kernel, as depicted in Table 5.1 for a representative sample of state-
of-the-art compilers.

When the compiler wishes to exploit concurrency that is beyond what the individ-
ual operations or statements of the inner loop provide, it can exploit pipelining at an
outer loop. In this pipelining approach, the compiler overlaps consecutive iterations
of a loop containing other loops nested within, while maintaining the pipelined exe-
cution of the inner loops [267]. In addition to the registers required for the pipelined
implementation of the inner loops, the implementation uses memories to save data
contexts corresponding to the various pipelined executions of the inner loops [266].

Table 5.1 Comparison of loop pipelining schemes (SPC [323], garpcc [60], and Snider’s com-
piler [285])

. Loop pipelining . Tgrget L
Compiler Algorithm base architecture Goal Applicability
scheme .
characteristics
SPC Pipeline Pipeline Fixed clock Maximum well-structured inner
vectorization vectorization period, pipelined throughput FOR-type loops with
with retiming ~ FUs with fixed affine array index
stages functions
garpce Software IMS (iterative Fixed clock Maximum A broad class of
pipelining modulo period, native throughput inner loops with
scheduling) pipeline stages affine array index
functions
Snider’s Software IMS (iterative Pipelined FUs Exploit A broad class of
compiler | pipelining modulo with fixed stages throughput inner loops with
scheduling) versus area (by affine array index
with retiming adding stages) functions

% In an architecture that does not have the support for low-level signal hand-shaking, the counter
would have to include k stall cycles to account for the latency of the computation in each loop
iteration.

144 5 Mapping and Execution Optimizations

5.4.4 Coarse-Grained Pipelining

Compilers for reconfigurable architectures can also exploit coarse-grained pipelin-
ing execution techniques for computations structured as a sequence of tasks. Of
particular interest are computations in the domain of image and signal processing
applications, where tasks can be defined as individual loop nests that manipulate
array variables.

As with any pipelined execution scheme, the data dependences between tasks
limit the exploitable concurrency. If one task reads (consumes) data another task
writes (produces) then they cannot execute concurrently as one task must execute
completely before the second task begins executing. Despite these data dependences
a compiler can use coarse-grained pipelining scheme that interleaves the execu-
tion of sequences of tasks. Tasks may overlap part of their execution based on pro-
ducer/consumer dependences.

Compilers can identify the opportunities for coarse-grained pipelining by analyz-
ing the source program and recognizing producer/consumer relationships between
tasks. When tasks consist of loop nests that manipulate array variables, compilers
can again rely on a wealth of array data-dependence analyses to determine the data
dependences between iterations of the same loop and across distinct loops.

For computations organized as a sequence of tasks inside an outer control loop
the compiler can explore coarse-grained pipelining in a combination of two strate-
gies. In one strategy, the compiler organizes each loop nest in the control loop as an
individual task and uses the dependences across loop nests to pipeline the execution
of the tasks. Each task, however, executes sequentially as is depicted in the illustra-
tive example in Fig. 3.12a in Chap. 3. In this approach, the compiler builds a task
graph and determines using dependence iteration distances, the sizes of the pipelin-
ing inter-stage buffers used to save and retrieve data that is, respectively, produced
and consumed by each task. In a second strategy, each task is also executed using
the pipelining techniques described in Sect.5.4.3 as is depicted in the illustrative
example in Fig. 3.12¢ in Chap. 3.

The concept of coarse-grained pipelining for sequences of loops has been re-
cently explored in the mapping of array-based computations to reconfigurable ar-
chitectures. The work by Ziegler et al. [351,353] uses classic array data-dependence
analyses to define the pipeline stages. The synchronization between the execution
in the stages is performed via hand-shaking and the communication of data between
them relies on FIFO buffers. This work focuses on finding appropriate sized commu-
nication buffers, constrained to loops that induce the same producer/consumer order,
and thus possibly sacrificing concurrency. The approach described by Rodrigues
et al. [263], however, uses a fine-grained, data-driven, synchronization scheme be-
tween stages as illustrated in Fig. 5.25. The fine-grained synchronization scheme'”
allows for a larger overlap of the computation in any two stages and consequently to
lower execution time. One advantage of this scheme lies in its ability to consider any

10 Similar in spirit to the empty/full tagged memory scheme used in the context of shared memory
multiprocessor architectures [283].

5.4 Pipelining 145

Write Read
Alexpri] Alexpr2]
Data Buffer
Execute N Execute
t Loop 1 Loop 2
Control
(a)
Write Read
Alexpri1] Alexpr2]
Loop 1 Data Buffer Loop 2
Execute
| Loop 1
tablexpr1] | tab[expr2]
Execute|
Control Control Loop 2
Loop 1 Sync Table Loop 2
(b)

Fig. 5.25 Coarse-grained pipelining: (a) original implementation without pipelining; (b) imple-
mentation with pipelining

irregular (out-of-order) produced/consumed relationship, achieving in many practi-
cal computations a performance speedup close to the theoretical speedup limit and
still with very small communication buffers.

5.4.5 Pipelining Configuration—-Computation Sequences

The steps of loading and configuration of resources on contemporary reconfigurable
architectures incur non-negligible latencies.!! These latencies are bound to increase
as devices increase in capacity and therefore in the number of individual config-
urable points.

To mitigate the costs associated with reconfiguration, compilers rely on two
approaches. In a first approach, a compiler can attempt to reduce the number of
reconfigurations needed. Recently developed techniques identify and aggregate de-
pendent computations in configurations as to minimize the overall execution con-
figuration time [107].

In a second approach, a compiler can exploit latency-hiding techniques such as
prefetching and pipelining. With pipelining and prefetching techniques, the hard-
ware implementation overlaps the execution of an active configuration with the
loading and storing in on-chip caches a subsequent configuration. Alternatively,
and in architectures without on-chip configuration caches or configuration context

T Even when using multicontext devices, the loading of the configuration data onto the inactive
planes takes several clock cycles.

146 5 Mapping and Execution Optimizations

planes [195], but with partial reconfiguration support, the reconfiguration latency
can be hidden, possibly fully, by using half of the device to run the current configu-
ration and the other half to configure the next one [119].

These latency-hiding techniques, however, can only be used to maximum benefit
whenever the configurations can be scheduled in a deterministic fashion. Despite
the obvious relationship to compilation techniques, we have not discussed here these
aspects of scheduling and management of configurations as they are commonly seen
as operating system or run-time system issues.

5.5 Memory Accesses

In the next sections, we describe three basic compiler transformations and mapping
techniques that aim at increased data availability and reducing memory access la-
tency. While these transformations are common in the mapping of computations to
traditional architectures, the diversity of the hierarchy of memory structures with
distinct capacity sizes, access latencies, number of access ports, and data width
organizations, found in today’s reconfigurable computing platforms, substantially
enhances their application in improving the performance of the resulting hardware
designs.

5.5.1 Partitioning and Mapping of Arrays to Memory Resources

The significance of data partitioning has long been recognized when compiling for
distributed memory multicomputers (see, e.g., [254]) and more recently in the arena
of embedded systems [73]. Partitioning and mapping of data to disjoint, and possibly
local memories, substantially improves the data availability as Processing Elements
(PEs) can access the various data items concurrently without contention in shared
intercommunication resources. This data partitioning is particularly important for
large data arrays extensively used in many loop-based computationally intensive
applications for which parallel execution is essential.

While many of the previously developed techniques for traditional parallel ma-
chines, such as data distribution (described in Sect.4.4.1), are also applicable to
reconfigurable architectures, the possibility of customizing the memories and their
interconnection substantially increases the complexity of their application. As a re-
sult, researchers either adapted existing techniques or developed newer algorithms
to deal with this challenging problem of data partitioning and mapping. Of the com-
piler techniques for the mapping of array data to memories, we focus on memory
bank disambiguation and generic array mapping.

In memory bank disambiguation, the compiler uses array data-dependence analy-
ses to determine when a given computation needs to simultaneously access disjoint
subsets of the data arrays. These array sections, e.g., odd-indexed and even-indexed

5.5 Memory Accesses 147

array items, are then mapped to distinct memory banks. Memory bank disambigua-
tion can also be profitably combined with loop unrolling in a technique called mod-
ulo unrolling [30,291]. Given a specific number of memory banks, the compiler
selects the unrolling factor that leads to a data access pattern of the computation
where the identified data subsets can be matched to the underlying memory bank
structure. In addition to increased data availability and consequently increased per-
formance, bank disambiguation and data partitioning also allow compilers to map
to memory arrays that exceed the capacity of the individual memory banks.

Figure 5.26 illustrates the application of memory disambiguation and modulo un-
rolling for the example code depicted in Fig. 5.26a. The compiler performs memory
bank disambiguation identifying six sections of the arrays a and b in the original
code. These sections are transformed to six smaller arrays, respectively, a0, al, a2
and b0, b1, b2, as depicted in Fig.5.26b. Figure 5.26c illustrates the mapping of
these arrays to six distinct memory banks. The transformation allows each iteration
of the loop to concurrently access, in the same clock cycle, all the six data elements
it requires.

#define W 3
int aO[WJ, bO[W];
#define W 3 int a1[W], b1[WJ;
int a2[W], b2[W];
int a[W][W], b[W][W], c[W]; int c[WJ;
f.<.).r(x=0; X < W; x++) { for(x=0; x < W; x++) {
sum = (a[x][0] * b[O][X]); sum = (a0[x] * bO[x]);
sum += (a[x][1] * b[1][]); sum += (al[x] * b1[x]);
sum += (a[x][2] * b[2][X]); sum += (a2[x] * b2[x]);
c[x] = sum; c[x] = sum;
} }
(a) (b)
ao[0] —»{ a[0][0] al[0] —» a[o][1] a2[0] —»| a[0][2]
ao[1] —» a[1][0] al[1] — a[1][1] a2[1] —»| a[ll][2]
a0[2] —»| a[2][0] al[2] —| a[2][1] a2[2] —»| a[2][2]
bo[0] —»| b[O][0] b1[0] —»| b[1][0] b2[0] —»| b[2][0]
bo[1] —>{ b[O][1] b1[1] — b[1][1] b2[1] —>{ b[2][1]
bo[2] —»{ b[O][2] b1[2] —» b[1][2] b2[2] —»| b[2][2]

(c)

Fig. 5.26 Loop unrolling and memory bank disambiguation: (a) C code after unrolling; (b) C
code after bank disambiguation; (c¢) arrays mapped to six memories with the mapping of each
array element to the original arrays

148 5 Mapping and Execution Optimizations

Fine-grained reconfigurable architectures require more sophisticated data parti-
tioning and array mapping approaches as these architectures expose to a compiler all
the low-level execution details. In this context, researchers have developed various
techniques, some of which take into account scheduling and latency of the opera-
tions in the computations and are thus akin to scheduling and mapping techniques
developed for high-level synthesis.

Gokhale and Stone [126] describe an algorithm for the mapping of array variables
to memory banks based on partitioning of the computation’s precedence graph (a
form of data-dependence graph), where each operation in the computation is repre-
sented by a node with edges connecting it to the input and output data array nodes.
The algorithm then exhaustively attempts various partitions and mappings of the
graph to minimize the number of used memories, and subject to their capacity con-
straints with the overall goal of minimizing execution time. In a similar approach,
but targeting embedded systems, researchers in the ATOMIUM [73, 337] compi-
lation and synthesis system proposed an approach for the problem of array data
mapping to RAMs, taking into account the dependences of the operations so that all
operations can be scheduled in a given cycle budget, while minimizing storage and
bandwidth.

Weinhardt and Luk [322] describe an integer linear programming approach for
the inference of on-chip memories with the goal of reducing the number of mem-
ory accesses for loop pipelining vectorization. Their approach also relies on very
simple affinity-based mapping decisions and like the previous work focuses exclu-
sively on a single level of storage hierarchy. Ouaiss and Vemuri [233] describe an
approach that targets a reconfigurable memory hierarchy. They use an integer linear
programming approach to find an optimal mapping of a set of array data sections to
a set of memories. Gong et al. [133] describe an algorithm that partitions the arrays’
data in various RAMs based on a loop’s iteration space and arrays’ data foot-prints
with the overall goal of minimizing remote memory accesses. They rely on the no-
tion of the size of data space along specific directions to evaluate the foot-print
and integrate a tentative data partitioning to estimate the number and latency of the
memory accesses. Lastly, Baradaran and Diniz [27] describe a compiler approach
that combines loop transformations such as loop unrolling and scalar replacement
with low-level critical path and scheduling information. Their algorithm greedily
explores a wide range of loop transformations to map array data to either discrete
registers or internal RAMs on an FPGA.

5.5.2 Improving Memory Accesses

While data partitioning and mapping techniques aim at increasing the data availabil-
ity by distributing data among distinct memories, several other techniques can be
used to ameliorate the cost of individual memory accesses. We now briefly describe
three such techniques, respectively, pipelining of memory accesses, customized ad-
dress generation units, and data packing/unpacking.

5.5 Memory Accesses 149

Memory access pipelining offers the simplest form of data access cost reduction.
As with other pipelining execution schemes, the initial data access latency is amor-
tized for a large aggregate set of accesses. Typically, the implementation requires the
setup of a set of hardware resources (i.e., registers) that define the base address and
stride of consecutive memory accesses. Pipelining is particularly suited for stream-
ing data accesses pervasive in program that manipulate array variables using affine
index functions.

The customization opportunities offered by reconfigurable architectures allow
implementations to greatly simplify memory interface structures, such as memory
access controllers, address generation units, and input/output buffers. These sim-
plifications can be substantial for fine-grained reconfigurable architectures such as
FPGAs, as they lead to substantial reduction of the amount of programmable re-
sources, i.e., device area, and consequently promote smaller and faster implementa-
tions. As a memory controller deals with the specific details of the physical interface
(e.g., data pin, timing, or protocol), it can be customized for the specific width and
number of memory access paths. Similarly, an address generation unit can be cus-
tomized for specific physical and virtual address ranges, and stride of accesses. The
savings can be substantial as for very limited access ranges the implementation may
use very specific address generation logic, replacing, expensive and lengthy, address
calculation operations with trivial operations efficiently implemented in hardware.

These opportunities have been extensively explored in the context of HLS for
ASICs [275] and more recently when targeting FPGAs. Park and Diniz [241] de-
scribe a complete compiler analysis and code generation approach for FPGA custom
memory controllers and input buffering. The compiler analysis provides information
about the memory access patterns for pipelining of data references corresponding
to array references across multiple iterations of nested loops. The compiler also de-
rives information about the relative rate among various array references and embeds
that knowledge into the scheduling of memory operations.

Packing and unpacking of data items allows the implementation to reduce the
number of memory accesses. When the basic memory transfer unit or block is larger
than the individual data items the computation manipulates, the implementation can
associate many data items to a single memory word. An individual memory access
thus fetches multiple data items, thereby reducing the number of memory accesses
when the computation requires all the items need to be fetched. This mapping tech-
nique is particularly beneficial for computations that access consecutive array data
elements or when the stride is known at compile time, and the compiler customizes
the data layout to match the data access patterns of the computation [261,291].

Figure 5.27 illustrates the application of packing and unpacking for a compu-
tation that operates on 5-bit array elements. In Fig. 5.27b the compiler has packed
every six consecutive elements of the a array into a single 32-bit element of the a32
array. It then laid out the a32 array in memory by padding the two most significant
bits in each element. For each read access the compiler translates the basic memory
access with mask and shift arithmetic and logic bit-level operations as depicted
in Fig.5.27b, revealing the huge saving as all six individual data items are now
accessed by a single memory read operation. Write operations, however, are more

150 5 Mapping and Execution Optimizations

int:5 a[NJ; // array of 5-bit integers int:32 a[N]; // array of 32-bit integers
if((N % 6) == 0) {
for(i=0; i < N; i +=6) {
w = alil;

if((N % 6) == 0) {
for(i=0; i < N; i +=6) {

T Z{r?} ... = (w & 0X0000001F):5;
s .+2 : ... = (W & 0OXO00003E0) >> 5):5;
o a[!+3]1 ... = ((W & 0x00007C00) >> 10):5;
o 2{:1}1 ... = ((w & 0X000F1000) >> 15):5;
o a[i+5]i .. = (W & 0x01F00000) >> 20):5;
y T b ... = ((W & OX3E000000) >> 25):5;
) } }
(a) (b)

Fig. 5.27 Packing and unpacking example of 5-bit items into 32-bit words: (a) original code; (b)
code using unpacking to access individual array elements and assuming elements are packed in
memory

complicated as the implementation may have to first read the memory word, mask
the bits corresponding to the specific data item and them write it back to memory.
Despite the memory savings and the reduction of the number of memory accesses
(see Fig.5.27a and b), unpacking operations may impose non-negligible overheads
in both latency and hardware resources. In fine-grained reconfigurable architectures,
however, the unpacking operations in the loop body of Fig. 5.27b can be performed
very efficiently via interconnection resources (wires).

5.6 Back-End Support

The back-end is responsible for the generation of data-path and control unit struc-
tures for the specific target reconfigurable architecture. In some architectures, as in
the case of FPGAs, the back-end is also responsible for the generation of the con-
figuration data or bit-stream used to program the reconfigurable device. We now
briefly describe the main functions and techniques that support these capabilities.

5.6.1 Allocation, Scheduling, and Binding

The three classical steps of allocation, scheduling, and binding'? have been ex-
tensively studied and developed in the context of high-level synthesis [114] and

12 1deally these three steps would be fused. The inherent algorithmic complexity of any of these
steps, however, has forced implementations to decouple them and imposed a specific execution
order (with possible re-execution). While in specific contexts some of the steps are absent, it is
common that allocation precedes binding, while binding and scheduling can be arbitrarily ordered.

5.6 Back-End Support 151

generically described in Chap. 3. When the compilation flow targets fine-grained re-
configurable architectures and uses traditional high-level synthesis tools as part of
its back-end, these mapping steps are transparently applied by the compiler. When
using logic synthesis without high-level synthesis tools or when targeting coarse-
grained reconfigurable architectures, however, the compiler must engage at some
level of the mapping in these three steps.

In the allocation step, the compiler is responsible for assigning each computa-
tional element to each type of architectural resource. It assigns each operation to
each type of FU, each data unit (scalar or array) to each storage type, and each data
transfer operation to each type of interconnection (e.g., buses, wires). This alloca-
tion step thus takes into account the specific needs of each computational element
and the specific support of the architectural resources in terms of supported instruc-
tions, storage capacity, and bandwidth, and typically consists of a straightforward
resource matching procedure. After allocation, scheduling is the process of assign-
ing operations to a discrete execution cycle or step, usually a clock cycle, and pos-
sibly exploiting resource sharing by scheduling two or more operations at the same
FU in distinct time steps. As a by-product of the scheduling step, the compiler gen-
erates a State Transition Graph (STG) it uses to derive a control unit, e.g., using a
finite-state machine (FSM), that will coordinate data-path execution. Lastly, high-
level synthesis flows perform a binding step where they assign each computational
element previously bound to a given type of resource to a specific physical instance
of that resource. For example, two addition operations can be allocated to the same
type of ALU unit, and during binding each operation can be bound to a distinct ALU
instance.

When targeting fine-grained reconfigurable architectures, and in the absence
of high-level synthesis tools, the compiler relies on the traditional algorithms for
scheduling, namely ASAP (As Soon As Possible), ALAP (As Late As Possible), list
scheduling, and force-directed list scheduling [114,210]. In this context, researchers
have merged basic blocks into hyperblocks [200], to enhance the scope and thus the
effectiveness of the scheduling steps. For coarse-grained architectures, and in the
absence of resource sharing, the scheduling step focuses almost exclusively on sup-
porting memory accesses [148] and on pipelined execution of loops [68].

5.6.2 Module Generation

We now describe module generation techniques for fine-grained and coarse-grained
reconfigurable architectures. For coarse-grained architectures, where most of the
high-level operations are directly supported by the FUs in each cell, neither a cir-
cuit generator nor logic synthesis is usually needed to generate the data-path and
control structures. Complex operations, as is the example of the square-root (sqrt)
operation, can nevertheless rely on circuit generators even for these architectures.
When targeting a fine-grained architecture, compilers resort to techniques for
generating the hardware structures of FUs, respectively, logic synthesis tools, or

152 5 Mapping and Execution Optimizations

module generators, in some instance combining them synergetically in the same
flow, as synthesis tools themselves may rely on module generators.

Module generators allow compilers to quickly generate a description of hardware
structure for a specific hardware operator. The generated circuit description can be
done at the resource level, natively supported by the target architecture, e.g., LUTs
in the case of an FPGA, or at a higher level of abstraction, e.g., at the logic gate
level. While the descriptions at both levels still require the use of placement and
routing for the generation of the architecture configuration specification (e.g., bit-
streams), when specifying a circuit at the logic gate level, the compiler may still need
to perform logic synthesis. Mapping is, nevertheless, required. Irrespective of the
code generation strategy, however, the use of module generators drastically reduces
the synthesis time and in some cases leads to hardware implementations with fewer
resources (area) and with shorter execution time (delay) than solutions derived using
logic synthesis. In some extreme and very specific cases, module generators can
directly generate structures containing preplacement information that can reduce
the overall placement and routing time.

In terms of implementation, these module generators are commonly structured
as scripts or parameterized language constructs such as the generate constructs
found in VHDL. These language features have been used in the back-end of several
compilers, e.g., the Nenya [65] and the garpcc [60] compilers. More sophisticated
implementations may even use a domain-specific language and interpreters as is the
case of the DIL language and compiler [55].

Other more flexible module generators offer higher-level language interfaces.
The JHDL framework [36] allows designers to describe the data-path at RTL in
a subset of Java extended by special APIs [328]. Such a description can be in-
dependent of the target FPGA architecture and thus require the use of mapping,
placement, and routing to generate the configuration data. The Jbits [136] tool gen-
erates bit-streams from a Java description integrating placement and routing steps
and has been used as the back-end of the Abstract-Machines compiler [287]. This
compiler performs some low-level optimizations, at the LUT-level for the Xilinx’s
Virtex FPGA, namely LUT/register merging, register/LUT merging, and LUT com-
bination.

In other approaches, compilers rely on commercial logic synthesis and place-
ment and routing tools for the generation of the architecture hardware structures.
The compiler generates a description of the desired architecture in common HDLs
(such as VHDL or Verilog) in structural and/or behavioral RTL forms. Other com-
pilers, however, generate algorithmic HDL descriptions and rely on external HLS
tools to generate the RTL description of the architecture. Compilers relying on ei-
ther of these two approaches invariably use some internal hardware architecture
template as is the case of the DEFACTO [47]. While this approach incurs long run-
times for the generation of the target device configuration, it offers the benefit of
a high-level code generation abstractions and relieves the compiler of the burden
of low-level optimizations commonly performed at the lowest levels of hardware
implementation.

5.7 Summary 153

5.6.3 Mapping, Placement, and Routing

The back-end of the compilation flow includes the three steps of mapping, place-
ment, and routing, to generate the configuration (i.e., a bit-stream) that once loaded
into the target reconfigurable device will configure the desired Reconfigurable
Processing Unit (RPU) internal structure. We now briefly describe these three steps,
well known in the CAD (Computer-Aided Design) community [78] and extensively
used in commercial synthesis tools when targeting FPGAs.

The mapping combines or decomposes the computation operations to the specific
hardware blocks of the target RPU. When targeting a Xilinx FPGA, for example,
mapping combines various logic gates corresponding to the computation to be
implemented as the FPGA’s Look Up Tables (LUTs). For coarse-grained reconfig-
urable architectures mapping is used, for example, to assign two or more arithmetic
or logic operations to a given Processing Element (PE). After mapping, placement
is responsible for assigning each RPU resource, or block, to a specific block in the
target RPU (e.g., identified as x, y coordinates in a two-dimensional reconfigurable
architecture). Lastly, routing assigns physical interconnection resources in the
reconfigurable architecture to connections between the blocks, previously placed.

Given the inherent algorithmic complexity of these steps, their implementations
are forced to rely on heuristics and generic optimization methods [266], such as sim-
ulated annealing techniques [176]. Naturally, the internal structure of the target RPU
tremendously influences the complexity of each of these steps. If a PE of a given
RPU can only implement a single operation on a specific execution step, a simpler
one-to-one mapping is required. The interconnection topology of the RPU drasti-
cally impacts the complexity of placement and routing. For fine-grained RPUs such
as FPGAs, placement and routing are extremely complex steps, often implemented
in a sequential fashion, possibly repeated. For coarse-grained RPUs, however, these
steps tend to be very simplified given the simplicity of the net-lists involved and
the coarser granularity of the underlying PE structures. When targeting a simple
VLIW-based RPU, placement is reduced to assigning the mapped operations to the
PE able to execute the operations. There are no routing issues, as routing is emu-
lated by load/store of data from/to a global register file. Similarly, when targeting
a network-on-a-chip architecture (NoC) where routers can dynamically define the
data communication paths, no static routing is required.

5.7 Summary

In this chapter we presented an overview of mapping and execution techniques for
reconfigurable architectures. While many of these techniques have been developed
for traditional architectures, the spatial nature of reconfigurable architectures sub-
stantially increases the complexity of their application.

We have described opportunities for reconfigurable architectures to exploit ad-
vanced execution techniques and the very challenging problems of temporal and

154 5 Mapping and Execution Optimizations

Table 5.2 Qualitative comparison of the applicability of some mapping techniques in reconfig-
urable architectures and general-purpose processors

Target
Technique Genergl purpose Reconfigu_rable
architectures computing
architectures

Temporal partitioning v
Spatial partitioning v
Loop pipelining v v
Memory accesses reduction by v v
Rotating-/shift-register
Memory accesses reduction by v v
packing

spatial partitioning. We also described the basic resource and operator mapping
techniques and loop pipelining, a very important execution technique that exploits
the spatial computing resources and custom control structures for high-throughput.
Lastly, we have described techniques that ameliorate the cost of memory accesses,
and highlighted the mapping techniques in the back-end phases of a compilation
and synthesis flow for reconfigurable architectures.

In Table 5.2, we summarize the applicability of some of the most significant
mapping techniques when targeting reconfigurable architectures, qualitatively com-
paring their applicability to general-purpose processors. For the techniques in this
table, we note that all but spatial and temporal partitioning are applicable to re-
configurable architectures and general-purpose processors. The application of these
common mapping techniques, however, exhibits very distinct potential impact in the
two architecture classes.

Chapter 6
Compilers for Reconfigurable Architectures

This chapter describes the most prominent academic efforts on compilation and
synthesis of application codes written in high-level programming languages to re-
configurable architectures. The maturity of some of the compilation and mapping
techniques described in Chaps. 4 and 5, and the stability of the underlying recon-
figurable technologies, have enabled the emergence of commercial compilation so-
lutions, such as the MAP compiler from SRC Computers [292] and the High-Level
Compiler from Nallatech [223], both of which support the mapping of programs
written in a subset of the C programming language to FPGAs.

In this chapter, we distinguish between compilation efforts that target fine-
grained commercially available reconfigurable devices, such as well-known FP-
GAs, and efforts that target architectures with proprietary reconfigurable devices,
typically coarse-grained devices. Despite their granularity distinction, and thus the
different mapping techniques used, these efforts exhibit many commonalities. We
begin with a brief historical perspective on early compilation efforts, which natu-
rally focused on fine-grained architectures. We then describe various representative
compilation efforts, highlighting their use of the transformations and mapping tech-
niques described in the previous two chapters. We conclude by summarizing and
highlighting the differences between the described compilation efforts.

6.1 Early Compilation Efforts

The early compilation efforts were naturally constrained by the inherent resource
limitations of early fine-grained reconfigurable devices, such as FPGAs and PLDs
and the low-level abstractions offered to program them. Consequently, the first com-
pilation efforts provided relatively simple, yet powerful, translation schemes of lim-
ited scope. The basic approach focused on straightforward one-to-one mapping
schemes which translated high-level programming language operators and simple
syntactic constructs directly to hardware structures (see, e.g., [326]). In this ap-
proach, each assignment statement is translated into a data-path element controlled

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 155
DOI 10.1007/978-0-387-09671-1_6,
© Springer Science+Business Media LLC 2009

156 6 Compilers for Reconfigurable Architectures

directly by a specific state in a finite state machine (FSM) controller. The compiler
aggregates multiple data-path elements to form a large data-path and corresponding
controller responsible for the hardware execution of the entire computation.

Several early compilation efforts to FPGAs reflected this simple translation ap-
proach. The work by Page and Luk [236] mapped occam programs [165] directly
into hardware. The Transmogrifier C compiler [116] and the compiler developed by
Wo and Forward [330] considered the mapping to an FPGA of a subset of the C
programming language. A similar translation approach was used by the Handel-C
compiler [235] exploiting the explicit concurrency of language constructs to aggre-
gate multiple assignment statements in a single FSM controller state.

While early compilers targeted a fine-grained standalone reconfigurable archi-
tecture, the PRISM I [21] and PRISM 1I [7] compilers increased the reach of target
architectures by compiling C programs to a system consisting of a GPP and an
RPU [20]. The compilation to the RPU focused on low-level optimizations, at the
gate or logic levels, still with limited scope and not supporting advanced data struc-
ture access constructs.

Spatial partitioning was also a key technique used in early compilers and tools.
They addressed the issues raised by the very limited amount of hardware resources
in each FPGA in important applications such as rapid prototyping and the emulation
of hardware, by partitioning large circuits to circuit boards with multiple FPGAs.
While most of spatial partitioning efforts focused on fairly low-level partitioning
using as input specifications of circuit net-lists, the work by Schmit et al. [273]
exploited spatial partitioning at the behavioral and structural levels. An example
of a compiler including spatial partitioning of C programs targeting multi-FPGA
platforms is described in [244].

With the increasing capacity of reconfigurable devices, compiler techniques and
tools reflected the need to raise the level of abstraction offered to programmers. In
this context, various efforts led to prototype compilers that interacted with high-level
synthesis (HLS) tools and could therefore leverage all the techniques developed by
the HLS research community. As an example, the work by Doncev et al. [97] used a
commercial HLS tool to synthesize specific architectures targeting FPGA substrates
from a behavioral algorithmic-level VHDL description.

After the earlier and arguably more timid efforts, we have witnessed a growing
interest in academia for compilation of high-level languages to FPGAs. Rather than
forcing programmers to code in hardware-oriented programming languages, many
research efforts took the pragmatic approach of directly compiling to hardware high-
level languages such as C or Java. Most of these efforts produce behavioral RTL-
HDL descriptions used by RTL/logic synthesis tools. While many of these efforts
originated in academia (e.g., [224,323]), the increase in FPGA capacity and popular-
ity stimulated a growing interest by industry in this area, leading to various industry
compilation efforts (e.g., Forge compiler [339], Nios II C-to-Hardware Acceleration
Compiler (C2H) [187], Impulse-C [243]) explicitly targeting FPGAs.

Largely for economic reasons, early compilation efforts to reconfigurable archi-
tectures focused mostly on fine-grained architectures. Compilation efforts target-
ing recently available coarse-grained reconfigurable architectures have their roots

6.2 Compilers for FPGA-Based Systems 157

in the translation approaches for Systolic, VLSI, and Wavefront arrays [178, 181]
of which the Xputer compiler [34, 148] is considered one of the first. The suit-
ability of coarse-grained reconfigurable architectures for computationally intensive
algorithms, requiring common arithmetic precision while exhibiting very desirable
power and energy characteristics, made them the target of recent research efforts
in academia and industry. For these architectures, spatial and temporal partitioning
alongside instruction scheduling and placement and routing are very important map-
ping techniques. Compilation efforts for these architectures could leverage, at least,
from a conceptual stand-point, experiences and insights of the same techniques de-
veloped for finer-grained reconfigurable architectures.

6.2 Compilers for FPGA-Based Systems

We now describe compilation efforts that exclusively target FPGA-based systems
through a wide variety of approaches and for distinct input programming languages
and computational models. We begin with a description of compilation efforts for
C programs and then describe efforts considering other languages (e.g., MATLAB
or Java). In terms of hardware implementation generation, these efforts rely on one
of two, not completely orthogonal approaches. One approach leverages the use of
component libraries and thus directly maps high-level programming constructs to
these systems. A second approach relies on external HLS tools and uses algorithmic
VHDL specifications as an intermediate compilation step.

6.2.1 The SPC Compiler

The SUIF Pipeline Compiler (SPC) focuses on automatic vectorization tech-
niques [323] for synthesizing custom hardware pipelines for loops in C programs.
The compiler directly generates RTL-VHDL descriptions for the corresponding
hardware implementations and relies on RTL/logic synthesis and placement and
routing tools to generate an FPGA bit-stream. SPC has its roots in the early research
efforts by Weinhardt [321].

The SPC analyzes all program loops, focusing on innermost loops with no data
dependences or with regular loop-carried dependences. SPC generates pipelined im-
plementations of those loops aggressively exploiting instruction-level parallelism
opportunities for hardware execution. The compiler synthesizes address generators
for accesses to multidimensional arrays, and generates hardware implementations
that extensively use shift-registers for input data reuse, thus eliminating redundant
memory read operations. Pipeline vectorization takes advantage of several loop
transformations to meet hardware resource constraints, while maximizing available
parallelism. The compiler also uses simple array memory allocation strategies to
increase data availability and array access transformations to reduce the cost, and
even eliminate memory operations [322].

158 6 Compilers for Reconfigurable Architectures

6.2.2 A C to Fine-Grained Pipelining Compiler

Maruyama and Hoshino [202] developed a prototype compiler that maps loop com-
putations expressed in C programs to fine-grained custom pipelined hardware so-
lutions implemented on FPGA devices. As with other similar early efforts, this
compiler also generates an FPGA device bit-stream from an RTL-VHDL hardware
description using RTL/logic synthesis and placement and routing tools.

The compiler aggressively splits arithmetic operations into cascading 8-bit wide
operations, a transformation known as decomposition, and uses speculative exe-
cution techniques between loop iterations for higher pipelining throughput. In the
presence of memory bank dependences, the pipeline is stalled and the accesses seri-
alized. Feedback dependences, either through scalar or array variables, cause spec-
ulative operations in the pipeline to be cancelled. These speculative operations are
then restarted after the operations in the previous loop iterations have completed
their updates to memory, thus guaranteeing the correctness of subsequent opera-
tions. The compiler also supports the mapping of limited recursive function calls by
converting them to iterative constructs. In addition, the compiler front-end supports
a limited set of concurrency annotations that allow the compiler to take advantage
of coarse-grained parallelism.

6.2.3 The DeepC Silicon Compiler

The DeepC silicon compiler [23,24] maps C or Fortran programs to a two dimen-
sional mesh of tiles where each tile consists of reconfigurable logic connected to
local memories and an inter-tile communication channel.

Internally, each generated tile design consists of a data-path and the definition
of the various communication channels along with an FSM-based control unit. The
compiler back-end generates technology independent behavioral RTL Verilog mod-
els and relies on commercial RTL/logic synthesis and placement and routing tools
to generate complete hardware implementations for each tile. The compiler uses
state-of-the-art static pointer analysis in the SUIF framework [30, 189] for bank
disambiguation and partitioning of array data across memories to collocate data to
the title that manipulates it. It also performs bit-width analysis [296] and supports
the translation of floating-point data types and operations to sequences of integer
bit-level micro-operations.

6.2.4 The COBRA-ABS Tool

The COBRA-ABS tool [99, 100] synthesizes custom architectures for digital signal
processing algorithms written in a subset of the C programming language. The target

6.2 Compilers for FPGA-Based Systems 159

architecture consists of a multi-FPGA system with various arithmetic ASICs and
global and local memories.

The tool uses commercially available synthesis tools to generate the various
FPGA bit-stream configurations. It uses a high-level synthesis approach developed
for ASICs to create a target architecture based on a VLIW style with a large register
file and centralized control unit. Internally, the tool performs spatial partitioning,
scheduling, mapping and allocation using simulated annealing techniques.

6.2.5 The DEFACTO Compiler

The DEFACTO (Design Environment For Adaptive Computing TechnOlogy) com-
piler [47] maps computations, expressed in high-level languages such as C and
Fortran to FPGA-based computing platforms such as the Annapolis WildStar
board [19]. It partitions the input program into a component that executes on a GPP
and a component that is translated to behavioral algorithmic VHDL to execute on
one or more FPGAs.

DEFACTO combines parallelizing compiler technology with commercially
available high-level VHDL synthesis tools. DEFACTO uses the SUIF framework
and performs several traditional parallelizing compiler analyses and transforma-
tions such as loop unrolling, loop tiling, data and computation partitioning. It
also generates customized memory interfaces and maps data to internal storage
structures. In particular, it uses data reuse analysis coupled with balance metrics
to guide the application of high-level loop transformations [290]. When perform-
ing hardware/software partitioning, the compiler is responsible for generating the
data management (copying to and from the memory associated with each FPGA)
and synchronizing the execution of every FPGA in a distributed memory parallel
computing style of execution.

6.2.6 The Streams-C Compiler

The Streams-C compiler [127] relies on a Communicating Sequential Processes
(CSP) parallel programming model [155]. The programmer uses annotations to ex-
plicitly declare and manage processes, streams, and signals. Streams-C processes
are independently executing objects with their bodies specified by a C routine and
using signals to synchronize their execution. Programmer is also responsible for the
definition of the data streams and associated input/output ports for each process,
explicitly controlling the execution of read and write operations with primitives
functions.

Internally, the compiler builds a process graph decorated with the correspond-
ing data stream information. It then maps the computation on each process to an
FPGA and uses the Malleable Architecture Generator (MARGE) tool [121] to gen-
erate the specific data-path VHDL code (structural RTL model) from C routine of

160 6 Compilers for Reconfigurable Architectures

each process. It inserts synchronization and input/output operations by converting
the annotations in the source C to library function calls. The MARGE tool is also re-
sponsible for scheduling the execution of loops in each process body in a pipelined
fashion [112].

6.2.7 The Cameron Compiler

The Cameron compiler [44, 45] maps programs written in a C-based single-
assignment language called SA-C onto an architecture composed of a GPP and
an FPGA. The compiler translates SA-C programs into data-flow graphs (DFGs)
and then onto synthesizable VHDL designs [260] relying on predefined and para-
meterized library templates. A back-end pass uses commercially available synthesis
tools, such as Synplicity’s Synplify [301] and placement and routing tools to gener-
ate the target FPGA bit-streams.

The SA-C language includes constructs that relax the execution order of compu-
tations, such as arithmetic reduction operators, windowing primitives over one- and
two-dimensional arrays, and variable bit-width specification. The SA-C compiler
exploits the semantics of these constructs alongside information extracted from
source-level pragmas, regarding array and loop bound definition, for the selection
of loop unrolling, loop tiling transformations as well as fixed-precision arithmetic
operators. Efforts on the SA-C compiler [318] also included the compilation to
Morphosys [283], a coarse-grained reconfigurable architecture.

6.2.8 The MATCH Compiler

The MATCH compiler [25,224] translates MATLAB programs [307] to behavioral
RTL-VHDL descriptions [142] which are subsequently mapped to FPGAs using
commercial RTL/logic synthesis and placement and routing tools. A novel aspect of
the compiler is the integration of intellectual property (IP) cores in its compilation
flow using an IP core repository with EDIF/HDL, performance, area and interface
descriptions.

The compiler leverages MATLAB’s library of predefined operators. To improve
the quality of the generated hardware implementations, and in addition to user di-
rectives, the compiler performs static array shape and dimension analyses of vec-
tor/matrix operations. Vector and matrix operations are translated into loop nests
and subject to various loop-based transformations for concurrent execution on mul-
tiple FPGAs. The compiler performs arithmetic precision, bit-width inference analy-
sis, and converts floating-point data types to fixed point. Lastly, it also performs
pipelining and scheduling of loop-level computations using modulo scheduling. For
pipelined loops the compiler schedules the memory accesses based on the number
of ports, the available memories, and on the delays of each IP core used.

6.2 Compilers for FPGA-Based Systems 161

6.2.9 The Galadriel and Nenya Compilers

The Galadriel compiler translates Java bytecodes [193] to an architectural synthesis
tool (Nenya) specific for FPGAs [65,67]. The compilers target architectures based
on a single commercial FPGA connected to one or more memories. The Galadriel
compiler acts as a front-end and exposes parallelism at different levels of granu-
larity, namely, operation, basic block, and functional, for each Java method being
compiled [66].

The Nenya compiler relies on a fine-grained scheduler to orchestrate the opera-
tions in each method, which considers different macrocell alternatives for a given
FU. This scheduler also takes into account the bit-width of each operand and the
area/delay estimation of each component in a hardware library, modeled using curve
fitting for each target device. Nenya uses temporal partitioning techniques for de-
signs that exceed the target FPGA capacity. It generates, for each temporal partition,
a control unit and a data-path unit with the corresponding memory interfaces. The
control unit is output in behavioral RTL-VHDL and the data-path in structural RTL-
VHDL, both ready for commercial RTL/logic synthesis. Lastly, FPGA bit-streams
are generated using vendor-specific placement and routing tools. Early versions of
Nenya relied on circuit generators to target the Xilinx XC6200 FPGA [341].

6.2.10 The Sea Cucumber Compiler

The Sea Cucumber (SC) compiler [310] is a Java to FPGA compiler that takes a
pragmatic approach to the problem of concurrency extraction. It uses the Java thread
model to recognize task-level or coarse-grained parallelism. The communication be-
tween the Java threads is defined by the CSP model and is based on one-way, non-
buffered, self-synchronized channels. The programmer is responsible for avoiding
deadlocks.

The compiler extracts fine-grained concurrency using conventional control-flow
and data-flow analyses at the statement level and across multiple statements in each
task. Internally, it uses a hyperblock representation to increase the amount of fine-
grained parallelism and uses if-conversion to facilitate mapping in space. A sched-
uler is responsible for generating a data-path and control unit for each hyperblock.
The back-end generates hardware specifications in EDIF (Electronic Design Inter-
change Format) using JHDL [36], which are then translated to FPGA bit-streams
using a placement and routing tool.

6.2.11 The Abstract-Machines Compiler

This compiler leverages the abstraction of objected-oriented programming in defin-
ing the set of predefined execution methods for objects of every class that extends

162 6 Compilers for Reconfigurable Architectures

a Machine [287] object. Classes define the machine-specific input, output and step
methods the compiler uses to define the interfaces to each hardware object that in-
stantiates the software object counterpart. The programmer naturally defines coarse-
grained concurrency as each object is mapped to a distinct hardware component. The
compiler then explores the execution methods in each class to extract and match to
hardware ILP opportunities.

Internally, the compiler uses the hyperblock and the SSA intermediate represen-
tations. To expose more ILP it unrolls loops, maps array variables to RAMs, and
uses predicated execution. It uses traditional source-level transformations, such as
dead-code elimination and constant propagation, and performs bit-width narrowing.
It also limits the use of multiplexers in the implementation of nested conditional
constructs. In the middle-level of the compilation flow, the compiler uses retiming,
micropipelining, and digital serial arithmetic for higher pipelined throughputs. In
the back-end, the compiler performs Virtex-specific transformations to decrease the
number of slices used relying on the JBits tool [136] to generate the FPGA bit-
streams.

6.2.12 The CHAMPION Software Design Environment

The CHAMPION software design environment [229] maps applications specified
in the Cantata [349] graphical programming environment to a board of FPGAs with
local memories. Cantata allows programmers to graphically describe their applica-
tions by interconnecting, in an acyclic fashion, icons, representing functions, named
glyphs. Each glyph is mapped to a given hardware component, whose behavior is
described in C code. Each glyph hardware component is synthesized, and placed
and routed beforehand, thus providing the compiler, during mapping, with accurate
information about its size and delay. The VHDL code (behavioral RTL) of each
component is generated using a commercial high-level synthesis tool that accepts
as input C code using fixed-point data types. To generate the FPGA bit-streams the
compiler relies on commercial logic synthesis and placement and routing tools.

CHAMPION focuses mainly on three design aspects. First, it uses a task-level
graph to explicitly represent the control and data dependences between the vari-
ous computations. This representation facilitates the spatial partitioning and simple
forms of temporal partitioning of the tasks when the hardware resources to imple-
ment a set of nodes in the graph exceeds the FPGA’s capacity. Second, and given a
data-driven execution model, it facilitates the design of synchronization and com-
munication primitives between components. Lastly, by using the attributes of each
glyph the compiler can match and adjust (by padding or truncating) port bit-widths
between components.

6.2 Compilers for FPGA-Based Systems 163

6.2.13 The SPARCS Tool

The SPARCS (Synthesis and Partitioning for Adaptive Reconfigurable Computing
Systems) tool [230] partitions and synthesizes designs for reconfigurable architec-
tures with multiple FPGA devices. The tool accepts as input a task graph where
each task is specified in behavioral algorithmic-level VHDL. It then applies tem-
poral and spatial partitioning techniques to map the individual tasks to the target
FPGAs.

Internally, it uses the unified specification model (USM) [231] as an intermediate
representation and relies on high-level synthesis, RTL/logic synthesis, and place-
ment and routing tools to generate FPGA configurations. The authors formalize a
joint temporal and spatial partitioning problems taking into account the additional
storage required to save intermediate data given a temporal partitioning of a task.
The tool uses integer-linear programming techniques to find a feasible temporal
partitioning of the tasks and a genetic algorithmic approach perform spatial parti-
tioning. The tool suffers from long run-times as it is dominated by design-space
exploration. This exploration relies on area and resource estimation provided by
commercial logic synthesis and placement and routing tools.

6.2.14 The ROCCC Compiler

The Riverside Optimizing Compiler for Configurable Computing (ROCCC) is a C
to hardware compiler that targets FPGA-based acceleration of frequently executed
code segments, most notably loop nests [137].

ROCCC uses a variation of the SUIF2 and MachSUIF [284] compilation in-
frastructure, called CIRRF (Compiler Intermediate Representation for Reconfig-
urable Computing) [138]. In addition to common loop-based transformations such
as loop-unrolling and strip-mining, this compiler uncovers and exploits input data
reuse in windowing operations by analysis of array subscripts in perfectly nested
loops [137]. Using predefined hardware buffering primitives and library modules,
the compiler generates dedicated structures to hold the data and schedules external
memory operations. It generates RTL-VHDL hardware specifications and relies on
commercial RTL/logic synthesis and placement and routing tools to generate FPGA
bit-streams.

6.2.15 The DWARV Compiler

The Delft Workbench Automated Reconfigurable VHDL (DWARV) Generator [346]
translates pragma-identified C functions to VHDL designs targeting the Molen ar-
chitecture [316].

164 6 Compilers for Reconfigurable Architectures

Internally, the compiler is organized as two modules: the DFG Builder and
the VHDL Generator. The DFG Builder constructs a hierarchical data-flow graph
(HDFG) from the SUIF2 intermediate representation [10]. It then performs scalar
replacement, if-conversion, and transformation to SSA form, in addition to standard
source-level optimizations. The VHDL Generator schedules the operations in the
HDFG, taking into account memory and register file characteristics (e.g., access
times) specified in a configuration file. The Generator outputs a behavioral RTL-
VHDL FSM-based design using the Molen architecture generation interface [182].
Existing commercial tools are then used to synthesize, place and route, and gen-
erate the final FPGA bit-stream which is then merged with the remainder Molen
architecture design.

6.3 Compilers for Coarse-Grained Reconfigurable Architectures

Other research and commercial projects took the alternative route of considering
specific reconfigurable architectures and developed their own translation and map-
ping tools. Examples of such efforts include the compilers for the PipeRench [132],
RaPiD [101], Xputer [149], and the XPP [31] architectures.

6.3.1 The DIL Compiler

The PipeRench compiler [55] maps computations described in an intermediate sin-
gle assignment language, called Data-flow Intermediate Language (DIL) [129], into
the PipeRench architecture [132]. The DIL language allows the description of uni-
directional pipelined circuits using a C-like syntax with operators using fixed-point
type variables with arbitrary bit-widths. The compiler performs bit-width inference
for all but input and output variables [56] as one of the 30 analyses passes before
generating hardware stripe configurations.

Internally, the compiler expands the input program using function and module
inlining techniques, as well as loop unrolling, generating a large straight-line single
assignment program representation. It then constructs a global hierarchical acyclic
DFG with nodes representing operations, I/O ports, and delay-registers and where
each operator node can be a DFG itself. After the generation of the global DFG, the
compiler performs a variety of common transformations (e.g., common subexpres-
sion elimination, algebraic simplifications, and dead code elimination). It then uses
module generators to expand the arithmetic operators and applying hardware retim-
ing techniques and interconnection simplifications. To generate the virtual hardware
stripes, the compiler performs a placement and routing phase over the DFG using a
deterministic linear-time greedy algorithm based on list scheduling [58].

6.3 Compilers for Coarse-Grained Reconfigurable Architectures 165

6.3.2 The RaPiD-C Compiler

The RaPiD-C compiler [84] relies on RaPiD-C, a C-like, architecture-specific con-
current programming language, to facilitate the mapping of high-level computation
descriptions to the RaPiD architecture [101]. RaPiD-C allows programmers to spec-
ify parallelism, data movement, and data partitioning across the multiple elements
of the RaPiD array. In particular, RaPiD-C introduces the notion of space-loop, or
Sloop. The compiler unrolls all the iterations of a Sloop and maps them onto the ar-
chitecture. The designer, however, is responsible for permuting and tiling a loop to
fit onto the architecture and for introducing and managing the communication and
synchronization in the unrolled versions of the loops. Specifically, the programmer
must assign variables to memories and ensure the correct data is written to the RAM
modules using the language-provided synchronization primitives, Wait and Signal.

Internally, the RaPiD-C compiler extracts from each loop a control tree per each
concurrent task [84] defined by a Par statement in the language. Each task control
tree has as interior nodes sequential statements defined by Seq constructs and For
loop statements. At the leaves the control tree the compiler inserts synchronization
dependences between the Wait and Signal nodes. During compilation, the RaPiD-C
compiler inserts registers for scalar variables and ALUs for arithmetic operations,
in effect creating a DFG for the entire computation to be mapped to a stage in the
architecture. The compiler then extracts address and instructions generators that are
used to control the transfer of values between stages. The RaPiD-C compiler uses
two control techniques, called multiplexer merging and FU merging, respectively. In
the multiplexer merging the compiler aggregates several multiplexers into a single
larger multiplexer and modifies the control predicates for each of the inputs taking
into account the net-list of multiplexers created as a result of the implementation of
conditional statements. The FU merging exploits the fact that ALUs can be merged
if their inputs are mutually exclusive in time and the union of their inputs does not
exceed a fixed bit-width value.

The compiler represents in its control tree, scenarios in which the control is data
dependent, i.e., by defining the dependency as an event with a condition evaluated
at run-time, directly translated into hardware. For example, the first iteration of a
loop can be represented by the i.first condition being true only at the first iteration
of a For loop, and the carry of an ALU operation is accessed by the alu.carry sig-
nal. The compiler aggregates these predicates into instructions and generates the
corresponding decoding that drives each of the available control lines of the archi-
tecture, so that the control signals can be present at the corresponding stage during
execution.

6.3.3 The CoDe-X Compiler

The CoDe-X [34] compiler maps C applications to a system consisting of a general-
purpose processor (GPP) and Xputers [146]. The compiler maps selected segments

166 6 Compilers for Reconfigurable Architectures

of C code to the rDPA applying a number of loop parallelization transformations
such as loop distribution and strip-mining to expose and leverage task-level con-
currency. It also performs loop unrolling, vectorization, and parallelization of loops
when they operate on different array sections.

Internally, the compiler identifies the tasks to be mapped to the coarse-grained
rPDA array, generating for each task a description of its computations using ALE-X,
a language to represent arithmetic and logic expressions. Each ALE-X description
is then synthesized to an rDPA using a data-path synthesis (DPSS) tool [148]. The
DPSS tool generates the configurations for the rDPA and the controller of the var-
ious task configurations. As the rDPA only executes data-flow computations, the
compiler uses the if-conversion technique.

The DPSS tool is also responsible for scheduling, using a dynamic list-
scheduling algorithm [148], the operations to be mapped to the array, with the
constraint of a single I/O operation per each step (the Xputer uses only one bus to
stream I/O data). The final step uses a mapper, based on simulated annealing, that
performs the placement and routing of each task’s data-path onto the rDPA array
and generates the various array configurations and corresponding controllers.

6.3.4 The XPP-VC Compiler

The XPP-VC compiler [68,69] maps C programs to the XPP [31], a coarse-grained,
reconfigurable architecture. XPP-VC uses the SUIF intermediate representation and
generates a structural description resembling functional elements of the XPP in
NML, the native mapping language of the XPP. These NML descriptions are then in-
put to a placement and routing tool for generating the XPP configuration bit-streams.
A stylized C form is accepted by the compiler to embed previously optimized NML
modules in C programs [70]. The compiler aggressively exploits loop pipelining us-
ing the pipeline vectorization technique developed in the context of mapping com-
putations to FPGAs [323] and adapted for targeting the XPP.

The compiler relies on input source code annotations to control loop unrolling
and to specify the binding of array variables to internal or external memories. The
compiler also includes temporal partitioning techniques to split computations unable
to be mapped in a single configuration, i.e., when requiring more hardware resources
than the available in the target XPP. Finally, and as the XPP architecture directly
implements a data-flow, data-driven execution scheme, with a ready/acknowledge
synchronization protocol, the compiler needs to be aware of the implicit synchro-
nization based on data availability between architecture components such as FUs
and/or interconnect resources.

6.3.5 The DRESC Compiler

The DRESC (Dynamically Reconfigurable Embedded System Compiler) [207]
maps C programs to the ADRES architecture [206,208,299]. The compiler relies on

6.4 Compilers for Hybrid Reconfigurable Architectures 167

execution profiling for identifying the computationally intensive loops (kernels) in
the input programs which are mapped to the two dimensional coarse-grained recon-
figurable array mode (also known as view) whereas other portions of the code are
executed using the VLIW mode. In this compilation flow, source-level transforma-
tions (e.g., loop transformations) are considered and applied manually to improve
implementations in the ADRES architecture.

Internally, the compiler uses the Lcode intermediate representation output by the
IMPACT compiler infrastructure [76, 159] to perform scheduling and other opti-
mizations. It also generates code for communication between the VLIW and the
reconfigurable array views alongside their schedulers. The compiler uses a novel
modulo scheduling algorithm which combines scheduling, placement and routing
to map pipelined loop kernels onto the reconfigurable array. A novel aspect of the
compilation flow is the possibility to target a family of ADRES architectures by
modification of an architectural description. Examples of this flexibility have been
shown for different routing topologies among the PEs of the architecture, as well as
for heterogeneous FUs [206].

6.4 Compilers for Hybrid Reconfigurable Architectures

We now describe illustrative examples of compilers that target hybrid architectures,
that include in the same VLSI chip traditional processors and reconfigurable ele-
ments.

6.4.1 The Chimaera-C Compiler

The Chimaera-C compiler [347] maps C programs to Chimaera [152], a hybrid
RISC/RFU (Reconfigurable Function Unit) architecture where both components,
the RISC and the RFU, are tightly coupled via a register file. The compiler uses the
GNU'’s C compiler (gcc) framework to identify suitable multiple-input single-output
sequences of instructions that it then translates into RFU customized instructions.

This compiler focuses on two key instruction-level transformations. First, it uses
control localization whereby it combines several basic blocks into a larger basic
block. This merging of instructions increases the likelihood of finding good candi-
date sequences for RFU custom instructions. The second transformation is akin to
multimedia ISA extensions whereby registers are split into disjoint fields operated
on by instructions on a field-by-field fashion as in an SIMD style. Given the op-
portunities exposed by these analyses, the compiler then identifies the instructions
and generates the RFU operations. The code generation and instruction scheduling
is simplified under the assumption that RFU custom instructions execute in a sin-
gle clock cycle. Loading of a configuration for a selected set of RFU instructions is
performed via special registers [152].

168 6 Compilers for Reconfigurable Architectures

6.4.2 The Garp and the Nimble C Compilers

The Garp reconfigurable architecture C compiler, called garpcc, maps C pro-
grams to the Garp reconfigurable architecture [60]. The Garp architecture exports
a GPP/RPU coprocessor model whereby communication of data between the GPP
and the RPU (a fine-grained reconfigurable array) is accomplished via memory-
mapped registers. The loading of the RPU configuration is controlled by the GPP
and is performed via the data memory bus.

Internally, the compiler uses the SUIF compiler framework [325] and identifies
hyperblock regions of instructions, mostly in loops, that are suitable for implemen-
tation in the RPU. The compiler also integrates software pipelining techniques [62]
and predicated execution in hardware. The compiler uses predefined module genera-
tors to generate the configurations for the RPU which are mapped to the architecture
using dynamic programming strategies by the Gama tool [59]. Gama also generates
from the DFG a specific array configuration for the RPU by integrating a specific
placement and routing phase.

The basic concepts of the garpcc compiler were incorporated in the Synopsys
Nimble compiler [192]. The Nimble compiler, however, targets a tightly coupled
CPU/RPU system. It uses profiling information to identify inner loops for imple-
mentation on a specific data-path in the FPGA-based RPU. Based on the profiling
data, Nimble partitions the input code between the CPU and the RPU. The hardware
component is mapped to the RPU by the ADAPT data-path compiler. The ADAPT
compiler uses module descriptions for creating the data-path and generates a se-
quencer for scheduling possible conflicts resulting from memory accesses and for
orchestration of loops. The compiler also considers floor-planning and placement
during this phase. Placement information of each data-path is fed to the placement
and routing FPGA vendor tool to generate the bit-streams. As with other efforts, the
software component of the input code is compiled using the CPU native C-compiler.

6.4.3 The NAPA-C Compiler

The NAPA-C compiler [121, 125] maps C programs to a coupled CPU/RFU recon-
figurable architecture exposing a coprocessor execution model where the CPU and
the RPU (an FPGA) share the same memory space. The compiler relies on source-
code extensions that specify concurrency and bit-widths of integer types [125] and
on programmer annotations (or pragmas) to define the input code sections that are
to be mapped to the RPU. Among its key mapping techniques is the automatic map-
ping of array variables to memory banks taking into account the operator precedence
between instructions of the code’s data-flow graph [126]. The NAPA-C compiler
has been retargeted for distinct hybrid architectures, namely the National Semicon-
ductor’s CLAy FPGA [121] and the NAPA (RISC+FPGA) device [125,264]. The
NAPA-C compiler has been recently augmented with a Stream-C language [127]
front-end to support stream-based computation abstractions.

6.5 Compilation Efforts Summary 169

Internally, the compiler uses the MARGE (Malleable Architecture Generator)
tool to generate a custom-specific instruction for each basic block of instructions to
be implemented in the RPU [121]. MARGE uses as input intermediate representa-
tion a three-address code annotated with operand bit-widths. Each custom instruc-
tion consists of a data-path leveraging a library of parameterized macros/modules
such as ALUs, counters, encoders, SRAMs, and register banks. Some of the li-
brary elements are preplaced and prerouted, drastically reducing the total compi-
lation time [121]. Macros are generated using the Modgen tool whereby the logic
structure (defined as a function of the bit-width of the operands, geometric shape)
of each macro can be described in a C-like language. The output of MARGE is
an RTL description containing Modgen components. FUs are shared by operations
whenever possible, e.g., whenever they have similar bit-widths, offer the same func-
tionality, and are not being used on a given schedule cycle. MARGE also generates
the controllers that orchestrate the execution of the generated designs.

6.5 Compilation Efforts Summary

The previous sections introduced some of the most representative research efforts re-
garding the compilation to reconfigurable architectures. Table 6.1 presents a charac-
terization of these efforts, grouped according to the supported programming model
(either sequential or concurrent) and the abstraction level provided to programmers

Table 6.1 Characterization of a representative number of compilation efforts

Target architectures Domain specialization
Microprocessor
coupled with _ . _ TS
Commercial FPGAs | reconfigurable .Coarse Archlte'cture Apphcﬁmon
. . grained RPUs Specific Specific
processing units
(RPUs)
°
>
@
'; Transmogrifier-C
—)
2 -
g
2 PRISM, DEFACTO
Z| = s s
s | & | T |roccc spc, ?(‘:‘d'f)c(" DRESC,
3 T | Trident-C, MATCH, | ~°7%" Code-X, DIL
£ % | SA-C, DeepC, e DIL,
£ T | Galadriel & Nenya, D'WARV ” XPP-VC
g XPP-VC, DWARV
£ .
lal|®
Flw | R
~ g s SPARCS
)
e | 2
<
§ E Handel-C,
el -
5| % | StreamC RaPiD-C RaPiD-C Stream-C
= %5, | Sea Cucumber,
S | £ | Abstract-Machines

170 6 Compilers for Reconfigurable Architectures

(either high or low). Also represented in the table are the types of reconfigurable ar-
chitectures they target, respectively, commercial FPGAs, GPPs coupled with RPUs,
or coarse-grained reconfigurable architectures. Also noteworthy is the domain spe-
cialization as architecture-specific or application-specific. Not surprisingly, most
compilers use a high-level sequential programming model and target commercial
FPGAs, given the wide acceptance of imperative programming languages.

Tables 6.2 through 6.8 summarize various characteristics for most of the
compilers described here, namely, the Transmogrifier-C [116], PRISM [21],
Handel-C [235], Galadriel & Nenya [65], SPARCS [230], COBRA-ABS [99],
DEFACTO [47], SPC [323], DeepC [24], C to Fine-Grained Pipeline [202],
MATCH [25], CHAMPION [229], Cameron [44], NAPA-C [125], Stream-C [127],
garpcc [60], Nimble [192], Chimaera-C [347], Abstract-Machines [287], ROCCC
[137], DWARYV [346], DIL [55], RaPiD-C [84], CoDe-X [34], and the XPP-VC [68].

A separation mark in each table splits the compilers targeting fine-grained archi-
tectures from those targeting coarse-grained architectures. Each table indicates, for
each compiler, the most relevant information and compilation techniques (v sym-
bols identify supported techniques and x symbols identify unsupported or nonap-
plicable techniques). Table 6.2 presents for each compiler the year of the first known
scholarly publication, the location where the compiler has been implemented, the
input language accepted, the granularity of the description, and the programming
model used. Table 6.3 indicates for each compiler the front-end used, the data types
supported, the intermediate representations used, and the level of parallelism ex-
ploited. Table 6.4 indicates for each compiler the support of loops, array variables,
floating-point operations, pointers, recursive functions, and sharing of FUs.

Table 6.5 indicates for each compiler the support of bit-width narrowing, bit op-
timizations, the approach used when mapping the existent arrays onto the target
architecture memories, the support of loop pipelining, the use of shift-registers, and
packing to reduce the number of memory accesses. Table 6.6 indicates the support
for array, temporal, spatial, and hardware/software partitioning. Table 6.7 indicates
the representation model used for the output, the tool used to generate the hardware
structure, and the tool used to generate the configuration data. Finally, Table 6.8
indicates for each compiler the target platform corresponding to published experi-
mental results.

In addition to the compilation efforts described in this chapter, there have been
continuing research efforts. The Trident C-to-FPGA compiler [311] is one of those
examples. Trident has been specifically developed for mapping scientific applica-
tions described in C to FPGAs. The compiler addresses floating-point computations
(both using standard and user-defined formats) and uses analyses and code transfor-
mations to identify and expose high levels of ILP and generate pipelined hardware
implementations.

A number of research compilers have been adopted by companies as the ba-
sis for their internal research and development, or even in product lines. As an
example, techniques used in the MATCH compiler [25, 224] were transferred to
AccelChip, Inc. [3]. The early work on hardware compilation from Handel-C per-
formed at Oxford University [235] in the second half of the 1990s ultimately led to

6.5 Compilation Efforts Summary

171

Table 6.2 Main characteristics of some of the considered compilers: General Information

Munich, Germany

Compiler Year Affiliation Input programming Granularity of Model Used
(1 pub.) language description
Transmogrifier-C 1995 Univ. of Toronto, Canad. C-subset Operati Software,
niv. of Toronto, Canada -subse peration imperative
PRISM-L II 1992 Brown Univ., USA C-subset Operation .Soflwa?e,
imperative
Handel-C Oxford Univ., Celoxica, Concurrency +. . Delay, C.SP mode.L
1996 channels + memories Operation each assignment in
UK
(C-based) one cycle
Galadriel & Nenya INESC-ID, Univ. of Any language compiled) Software,
1998 to Java bytecodes Operation . .
Algarve, Portugal imperative
(subset)
SPARCS 1998 Univ. of Cincinnati, USA VHDL tasks Operation VHDL and tasks
COBRA-ABS 1997 Univ. of Aberdeen, UK C-like (subset) Operation _Softwal_'e,
imperative
Univ. of South.
DEFACTO 1999 California/Information C-subset Operation ii?f::/;?é
Sciences Institute, USA P v
Univ. Karlsruhe,
SPC Germany, - . - Software,
1996 London Imperial College, C, Fortran: (subsets) Operation imperative
UK
DeepC 1999 MIT, USA C, Fortran: (subsets) Operation .SOfIWal.'C,
imperative
C to Fine-Grained Software
Pipeline 2000 Univ. of Tsukuba, Japan C-subset Operation . L
imperative
MATCH 1999 | Northwestern Univ., USA Matlab Operation and/or Software,
functional blocks imperative
CHAMPION . Khoros/Cantanta — functional blocks .
1999 Univ. of Tennessee, USA Glyphs in fixed-point C (modules/elyphs) Data-driven
Cameron Colorado State Univ., - Software,
1998 USA SA-C Operation functional
. Software,
NAPA-C 1997 Sarnoff [CJ«.S)Izorauon, C-subset extended Operation imperative added
with concurrency
Los Alamos National
Stream-C 2000 Laboralf)ry, Samoff C-subset extended Operation Software, stream-
Corporation, Adaptive based, processes
Silicon, Inc., USA
garpce Univ. of California at - Software,
1998 Berkely, USA ¢ Operation imperative
Nimble 2000 Synopys, USA C Operation .Soflwafe,
imperative
Chimaera-C 2000 Northwestern University, c Operation .Soflwafe,
USA imperative
Machines
Abstract-Machine 2001 Hewlett-Packard C++ (subset) extended Operation (process/thread)
Laboratories, USA to specify Machines P Notion of update
per cycle
University of California . . Software,
ROCCC 2003 at Riverside, USA C-subset Operation imperative
Delft University of Softwa
DWARV 2007 Technologies, The C-subset Operation Dottware,
imperative
Netherlands
DIL Carnegie Mellon Univ., . Imperative with
1998 USA DIL Operation Delay annotations
Specific to RaPiD,
RaPiD-C 1997 Univ. of Washington, RaPiD-C Operation par, Wal.t, slgnal,
USA and pipeline
statements
CoDe-X 1995 Univ. of Kaiserlautern, C-subset, ALE-X Operation .Sol'lwafe‘
Germany imperative
PACT XPP Software.
XPP-VC 2002 Technologies, Inc., C-subset (extended) Operation . L
imperative

172 6 Compilers for Reconfigurable Architectures

Table 6.3 Main characteristics of some of the considered compilers (cont.): Front-End Analysis

Compiler High-level Front-end Data types Intermediate representations Parallelism
mapping to
hardware
Transmogrifier-C Integrated Custom Bit-level AST Operation
PRISM-I, 11 Integrated Lec Primitive Operator Network (DFG) Operation
Handel-C Integrated Custom Bit-Level AST ? Operation
. Custom: A Operation, inter basic
Galadriel & Nenya Integrated GALADRIEL Primitive HPDG + global DFG block, inter-loop
SPARCS Int;%;ted Custom Bit-level USM Operation, task-level
COBRA-ABS Integrated Custom? 7 7 Operation
DEFACTO C"“;I“ﬁesmal SUIF Primitive AST Operation
SPC Integrated SUIF Primitive DFG Operation
Commercial . .
DeepC RTL synthesis SUIF Primitive SSA Operation
Cto F{ne-_Gramed Integrated Custom Primitive DDGs (data dependence Operation
Pipeline graphs)
Commercial - . .
MATCH RTL synthesis Custom Primitive AST, DFG for pipelining Operation
Commercial Primitive, fixed- Functional
CHAMPION C-to-VHDL Custom ©, Txe! SFG (signal flow graph) unctiona
. point (Glyphs/modules)
compiler + LS
Commercial Hierarchical DDCF (Data
Cameron LS Custom Bit-Level Dependence and Control Operation
Flow) + DFG + AHA graph
NAPA-C Integrated SUIE Pragmas (b1t AST Operation
. Pragmas .
Stream-C Integrated SUIF (bit-level) AST Operation
garpec Integrated SUIF Primitive Hyperblock + DFG O"e’a"ﬁ;‘(;;l'(‘;e' basic
Nimble Integrated SUIF Primitive Hyperblock + DFGs Ope”‘“g;‘o‘sl'(‘f' basic
Chimaera-C Integrated GCC Primitive DFG Operation
Abstract-Machi Integrated Custom Bit-level Hypergraph + DFG Operation, machines
ROCCC Integrated SUIF2 Primitive CIRRF Operation
DWARV Integrated SUIF2 Primitive SUIF2 IR + HDFG Operation
DIL Integrated Custom Bn-lep\geiln(t:lxed- Hierarchical and acyclic Operation
RaPiD-C Integrated Custom Prlml\a';;/[plpe Control Trees Functional, operation
CoDe-X Integrated Custom Primitive DAG Operation, loops
XPP-VC Integrated SUIF Primitive HTG+, CDFG Operation, inter basic
block, inter-loop

the creation of Celoxica Ltd. [75]. The research work on the Streams-C hardware
compiler [127] was licensed by Impulse Accelerated Technologies, Inc. [160,243],
and the work on the garpcc compiler [60] was used by Synopsys in the Nimble
compiler [192].

6.5 Compilation Efforts Summary

173

Table 6.4 Main characteristics of some of the considered compilers (cont.): Supported Features

X (arrays are

Compiler Loops Array variables Floating-point Pointers Recursive Sharing of
operations functions functional
units (FUs)
Transmogrifier-C v x x x x x
PRISM-L, II v X X X X x
Handel-C v x x x x x
(only on
Galadriel & Nenya v v x x x distinct
conditional
paths)
SPARCS v v x x x v
COBRA-ABS v v x x x v
DEFACTO v v X X X v
4
SPC . v x x x x
(inner)
DeepC v x
Cto Fline-AGralned v v x x limited x
Pipeline
MATCH v v Converteq to fixed- « « «
point
CHAMPION v v x x x x
Cameron v v x x x x
NAPA-C v v x x x v
Stream-C v v x x x v
’ v Soft v Soft x
garpce (inne) oftware oftware
Nimble v v Software Software Software x
Chimaera-C X X Software Software software x
x
] i v v
Abstract-Machine (unrollable) x x x
ROCCC v v x x x x
4

DWARV v On_EoinE v x x

DIL (unro;able) used to specify x x x x
interconnections)
RaPiD-C v v (used to access « « « v
/O data)
CoDe-X 4 v x x x x
XPP-VC 4 4 x x x x

174 6 Compilers for Reconfigurable Architectures

Table 6.5 Main characteristics of some of the considered compilers (cont.): Optimizations

Compiler Bit-width Bit- Arrays-to-multiple- Loop Memory Memory
narrowing optimizations memories mapping pipelining accesses accesses
reduction by reduction by
shift-Register packing
Transmogrifier-C X v x x x X
PRISM-L, I x x x x x
Handel-C x x Explicit ?.Se of Manual Manual Manual
memories
Galadriel & v v (exhaustive or « « «
Nenya manual)
SPARCS x v v ? ? x
COBRA-ABS x x x ? ? x
DEFACTO x x x 4 4 v
SPC x x (ILP) v v x
DeepC v k3 v X X x
Cto Fi_ne-Grained « « < v < «
Pipeline
MATCH v v x v x v
CHAMPION x v x x x x
Cameron x x x v v x
NAPA-C « « v (1mp11_01t v « <
enumeration)
7 (il
Stream-C x x (1mpl|;|t v * x
enumeration)}
X (queues are
I « « « v « used to grap a
garpec cache line at a
time)
Nimble x x x x x
Chimaera-C x x x x x x
Abstract-Machine v 4 x 4 x x
ROCCC x x ? ? v ?
Relies on RAM
inference of the
x x x x x
DWARY synthesis tools for the
local arra;s
DIL v v x v x x
. Explicit use of
RaPiD-C x x . v x x
memories
CoDe-X x x x v x v
XPPVC « « _/ (one array per v v «
internal memory)

6.5 Compilation Efforts Summary 175

Table 6.6 Main characteristics of some of the considered compilers (cont.): Forms of Partitioning

Compiler Array Temporal partitioning Spatial Hardware/software
partitioning partitioning partitioning
Transmogrifier-C x x x x
PRISM-I, I x x x x
Handel-C x x x x
Galadriel & Nenya x v x x
SPARCS x v v x
COBRA-ABS x x v x
DEFACTO X X X v
SPC X X X X
DeepC v x x x
C to Fine-Grained « « « «
Pipeline
MATCH x x v v
CHAMPION x 4 4 x
Cameron x x x x
NAPA-C x x x X (annotations)
Stream-C x x x x
garpce x x x v
Nimble x x x v
Chimaera-C x x x v
Abstract-Machine X X X X
ROCCC x x x x
DWARV x x x x
P —
% (the architecture is
DIL x automatically x x
virtualized)
RaPiD-C x x x x
CoDe-X x x x v
XPP-VC « v (include; loop « «
dissevering)

176 6 Compilers for Reconfigurable Architectures

Table 6.7 Main characteristics of some of the considered compilers (cont.): Back-End Support

Compiler Output of the compiler: Generation of the hardware Back-end
(1): RTL-HDL structure: (bit-stream generation):
(2) : algorithmic-HDL VLS: Vendor Logic Synthesis CPR: commercial
(3) : bit-streams CG: Circuit Generators place and route tools
0O: one-to-one mapping
Transmogrifier-C ? CG CPR
PRISM-L, IT ? CG CPR
Handel-C (1) CG CPR
. Data-path: CG
Galadriel & Nenya (1) Control unit: VLS CPR
SPARCS 1) VLS CPR
COBRA-ABS 1) VLS CPR
DEFACTO 2) VLS CPR
SPC 1) CG CPR
DeepC 1) VLS CPR
Cto Fipe—Qrained 0 VLS CPR
Pipeline
MATCH (1) VLS CPR
CHAMPION 1) VLS CPR
Cameron (1) VLS CPR
NAPA-C 1) CG CPR
Stream-C (1) CG CPR
garpcc 3) CG Proprietary: Gama
Nimble 1) CG CPR
Chimaera-C ? Manually ? -
Abstact-Machine 3) CG Proprietary + Jbits
ROCCC (1) VLS CPR
DWARV (1) VLS CPR
DIL 3) CG Proprietary
RaPiD-C 3) 00 Proprietary
CoDe-X 3) 00 Proprietary
XPP-VC 3) 00 Proprietary: xmap

Table 6.8 Main characteristics of considered compilers (cont.): Target Platform

Compiler Target platform
Transmogrifier-C 1 FPGA
PRISM-L, II 1 FPGA
Handel-C 1 FPGA
Galadriel & Nenya 1 FPGA connected to multiple memories
SPARCS Multi-FPGA, Multiple Memories
COBRA-ABS 1 global memory bus-connected with multiple FPGAs (_Motor_ola MPA-1000): each one with 1
local memory or custom/ASIC arithmetic resource
DEFACTO Multi-FPGA, multiple memories
SPC 1 FPGA connected to multiple memories ?
DeepC A mesh of tiles each one with 1 FPGA connected to 1 memory
Cto Fllne-lGramed 1 FPGA connected to multiple memories
Pipeline
MATCH Multi-FPGAs, each one connected to one memory
CHAMPION Multi-FPGAs, each one with local memory
Cameron 1 FPGA connected to multiple memories
NAPA-C 1 FPGA connected to multiple memories
Stream-C 1 FPGA connected to multiple memories
Garpce WP (Garp) connected to a proprietary RPU
Nimble-C Garp, ACE2 Card (a uSPARC CPU and Xilinx 4085 FPGAs), ACEV (ACE Card and a Xilinx
XCV 1000 FPGA)
Chimaera-C UP (SimpleScalar) connected to an RFU
Abstract-Machine 1 FPGA connected to memories
ROCCC 1 FPGA
DWARV 1 FPGA
DIL PipeRench RPU
RaPiD-C RaPiD RPU
CoDe-X Multi-KressArrays connected to a host system
XPP-VC 1 XPP connect to memories

Chapter 7

Perspectives on Programming Reconfigurable
Computing Platforms

Despite tremendous progress in the development and integration of compilation
and synthesis techniques, the challenging nature of the compilation and synthesis
for reconfigurable architectures has defied the establishment of a de facto standard
methodology. In this chapter, we begin by providing an overall perspective of what
we believe is missing to make reconfigurable computing an ever increasing reality.
We then outline several outstanding issues suggesting a set of research directions
in compilation techniques for these architectures. In this context, we have focused
on compilation techniques and have deliberately omitted system-level aspects of
reconfigurable architectures such as dynamic reconfiguration and operating system-
level services. We then describe a vision, albeit speculative, of a compilation flow
augmented by the synergetic integration of language description and transformation
specification techniques as well as the notion of resource virtualization. Finally, we
discuss how reconfigurable technologies can play an important role in future VLSI
devices where unreliability is an important issue [57, 130]. In this context, we high-
light how compilation techniques for reconfigurable architectures can also play a
role in emerging nanotechnology systems.

7.1 How to Make Reconfigurable Computing a Reality?

The last 15 years have witnessed a great enthusiasm for reconfigurable computing as
a new and broad computing paradigm with great computational flexibility and per-
formance potential [83,90,122]. Despite many research efforts, first in academia and
more recently in industry, reconfigurable computing has not been widely adopted as
the dominant computing paradigm. We believe there are several key factors that
contribute to this, as addressed in the next sections.

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 177
DOI 10.1007/978-0-387-09671-1_7,
© Springer Science+Business Media LLC 2009

178 7 Perspectives on Programming Reconfigurable Computing Platforms

7.1.1 Easy of Programming

To make reconfigurable computing approachable to the average programmer,
programming tools must offer a set of high-level programming abstractions
programmers can easily grasp, and execution models they can easily reason about.
As with early compilers for traditional architectures, compilers for reconfigurable
architectures must hide the complexity of the low-level programming details while
exploiting a wide range of mapping choices in the pursuit of effective computing
solutions.

In this context, researchers have proposed various high-level programming lan-
guage approaches. While imperative languages such as MATLAB offer the clear
benefits of sequential semantics, uncovering the underlying concurrency is an ex-
tremely complex problem. Some approaches relaxed the sequential semantics of
some of its constructs to facilitate the extraction of concurrency from a sequential
program (e.g., SA-C [44]), while other efforts have focused on explicitly concurrent
languages inspired by the CSP programming model that better matches the spatial
nature of reconfigurable architectures [127].

While there is no obvious path that offers the best of both worlds, we envision
three main, and possibly complementary, approaches that can ameliorate the pro-
gramming challenges for reconfigurable architectures, namely:

o Augmenting Imperative Languages: In this approach, programmers would use
concepts based on aspect-oriented programming [109, 174] to augment an ap-
plication where information compilers are (currently) unable to derive. For
example, aspects can allow the programmer to specify execution modes for
specific regions of the code, to indicate data properties such as streaming data
rates from input devices, or to add complementary information about an algo-
rithm, not present in the programming model used. The programmer would re-
tain the benefits of an imperative programming language while relying on the
richness of aspects to aid the compiler in the mapping of the application to the
underlying architecture.

e Transactional-Based Languages: In this approach the language allows the pro-
grammer to explicitly define regions of the code that execute sequentially, trans-
actions [198], but whose execution order can be arbitrary, provided they execute
atomically. Transactions offer a programming model that is concurrent in na-
ture, but isolate the programmer from having to explicitly manage concurrency
and data orchestration throughout the execution [247,336]. In combination with
emerging productivity-oriented parallel programming languages (e.g., X10 [77])
that provide mechanisms for high-level synchronization and assignment of data
to locus of computations, these approaches might represent promising avenues
for programming reconfigurable architectures.

e Domain-Specific Languages: In this, nongeneric programming approach, the lan-
guage would include domain-specific constructs and/or knowledge about the
specific target architecture (such as with the DIL [55] and the RaPiD-C [84]
languages). Features such as the partitioning among hardware resources with

7.1 How to Make Reconfigurable Computing a Reality? 179

different execution models, and the direct indication of which computation to as-
sign to which kind of resources, would help the compiler in its mapping. The use
of a programming language with a limited scope would allow programmers to
better understand the impact of compiler mapping techniques and code transfor-
mations.

While there is no obvious single generic programming solution, the approaches
outlined above could coexist synergetically. The ability to exploit architecture-
specific aspects in a language with transactional-based abstractions would al-
low compilers to exploit the knowledge about the underlying architecture. The
compiler would select which of the aspects were relevant to the specific archi-
tecture at hand and ignore others that describe features of the computations, or
of the architecture, that are either nonapplicable or lead to clearly unprofitable
implementations.

It is even possible to envision the concept of virtual abstract machines whereby
an external mechanism, the programmer targets a set of abstract machines with
distinct instruction-set architectures (ISA), execution models, and configuration
parameters. In addition to the virtual machine description that would reflect the
underlying architecture, a separate programming mechanism would define an ex-
ecution model, exposing notions akin to tasks, processes, or transactions. The
programmer would still define an application in terms of these computing ab-
stractions, relying on the compiler to map them to a concrete abstract machine
that better matches, or facilitates, the mapping to the specific reconfigurable
architecture.

7.1.2 Program Portability and Legacy Code Migration

This is a very important economic issue given the huge industry investment in their
code basis and is very likely the key to enable reconfigurable computing to become
mainstream. While a disruptive programming evolution approach would likely be
the most expeditious process for the emergence of a common programming lan-
guage, the economics of such an approach makes this scenario extremely unlikely.
Furthermore, the variety of programming approaches proposed in recent years rein-
forces the difficulty of a consensus ever being reached.

An incremental, nondisruptive approach is likely to be the only economically
feasible option. In this context, it is possible to envision a series of evolution stages
relying on the techniques described in the previous section.

In a first stage, programmers would augment their C-based application codes
with specific algorithm-related and target architecture-related aspects. This would
allow them to immediately rip the benefits of reconfigurable architectures while
retaining the integrity of their codes. Specific code patterns could be recognized and
implemented as domain-specific softcores creating an intermediate layer between
the program and the fine-grained structures of some reconfigurable fabrics.

180 7 Perspectives on Programming Reconfigurable Computing Platforms

In a second stage, selected portions of the application would be translated to ei-
ther domain-specific languages and/or use transaction-based techniques to improve
the performance of specific subcomputations. This translation effort would be re-
lated to the desired increase in application performance. Still, in this scenario, the
programmer would retain an application code that could be easily translated to a
sequential programming language.

7.1.3 Performance Portability

The diversity of architectures, reconfigurable devices can emulate, leads to a wide
variety of possible implementations for the same functionality, and hence many
mapping and scheduling decisions. Some of these decisions are fairly sensitive to
variations of the underlying architecture, in particular for coarse-grained reconfig-
urable architectures. For example, the use of a long interconnection in an ALU-
based reconfigurable architecture might imply the use of additional clock cycles and
data buffering along the routing path. The variety of an application implementation
scenarios makes it very hard for a compiler to establish a very robust performance
basis. The potential heterogeneity of RPUs and the porting of specific mapping and
scheduling strategies to an architecture with distinct underlying mechanisms further
exacerbate this issue.

We can envision two basic approaches that can address this problem of perfor-
mance portability. A first and less satisfactory approach would rely on the compiler
to be conservative in its mapping and scheduling phases, not pushing to the limit
the device capacities.! The spare device capacity would allow compilers to make
mapping decisions that would be less sensitive to device features. When moving
to a new architecture with similar features, the compiler could reuse the same ap-
plication mapping decision and rely on a low-level emulation of device features to
effectively recast the computation on the new architecture.

A second more satisfying approach would leverage the notion of resource virtu-
alization. Here, the compiler could rely on the notion of emulation of abstract ma-
chines, possibly, with specific execution and control models, to facilitate the map-
ping, and more importantly the portability, of applications across architectures. For a
selected combination of execution models and architectures, some of these abstract
models could be supported natively by the underlying architecture, thus exploiting
the architecture’s full potential. When these abstract models could not be directly
supported, the compiler would attempt to recast them to other directly supported
abstract models.

! With the increase in device capacity, device occupancy is bound to be an increasingly less im-
portant concern, as occurred in the 1990s with traditional processors with respect to the quality of
compiled code.

7.2 Research Directions in Compilation for Reconfigurable Architectures 181

7.2 Research Directions in Compilation for Reconfigurable
Architectures

We now outline several open issues for compilers for reconfigurable architectures
that naturally reflect the broad issues discussed in the previous section. In this de-
scription, we focus on aspects related to the compilation process and less on the
overall concepts of program and performance portability.

7.2.1 Programming Language Design

Most approaches on compilation to reconfigurable architectures have addressed im-
perative programming languages (e.g., [44, 125, 323]), possibly augmented with
annotations or pragmas, due to their wide acceptance, and consequently their large
codes basis in generic and embedded computing domains. Given the many chal-
lenges this approach imposes, many researchers have advocated the use of alterna-
tive programming models. For instance, there have been substantial research efforts
on hardware compilation for declarative languages (e.g., Ruby [197]), and func-
tional languages (e.g., Lava [42], SAFL [278]) as well as on hardware compilation
of synchronous programming languages such as Esterel (e.g., [102]). Although sig-
nificant, these efforts have been limited by the confined acceptance and adoption of
these languages.

Domain-specific languages can also play an important role in mitigating some
of the complexity issues plaguing the compilation for reconfigurable architectures.
Given their focus, domain-specific languages could allow programmers and/or
library designers to describe a wide range of programmable hardware resources,
possibly exposing the programmer to the issues of unreliability and alternative
implementations. These features, possible beyond the reach of the average pro-
grammer, would allow the compiler to internally explore alternative architectures
and run-time adaptive strategies, thus promoting the generation of flexible hardware
solutions.

7.2.2 Intermediate Representation

A common goal of an intermediate representation is to explicitly represent the con-
currency in the input computation to match the available parallelism in the target
reconfigurable architecture. The common approach has consisted in augmenting an
existing compilation infrastructure, such as the popular SUIF compilation frame-
work [325], with a graph-based representation derived by the knowledge gained
from analysis of the input program. Furthermore, a robust front-end in the frame-
work can easily accommodate other programming languages, with the added benefit
of allowing a simple migration path for the components of the application that are
mapped in a reconfigurable computing system to traditional processors.

182 7 Perspectives on Programming Reconfigurable Computing Platforms

As a result of the many cost benefits of using an existing framework, there has
been very little research in this area. A novel intermediate representation is usually
tied to a new programming language, where the semantic gap between the language
and the internal representation is not wide. The easiest development path for an in-
termediate representation with explicit concurrency seems to be the development of
a concurrent programming language. Although many such languages exist, none has
emerged as the dominant paradigm that offers substantial benefits over the approach
of automatic derivation of concurrency from imperative high-level programming
languages.

7.2.3 Mapping to Multiple Computing Engines

The mapping of computations to multiple computing engines is becoming an in-
creasingly important issue. While this mapping can be viewed as a generalization
of the hardware/software partitioning problem found in today’s reconfigurable plat-
forms, the complexity of the problem is compounded in the presence of multiple,
and possibly, heterogeneous architecture components. These multiple components
may include general-purpose processors (GPPs), application-specific instruction-set
processors (ASIPs), heterogeneous hardware templates (possibly different coarse-
grained reconfigurable arrays). These components might be hardwired or even im-
plemented as soft-macros defined over fine-grained reconfigurable units.

Although hardware/software partitioning has been extensively researched in the
context of hardware/software codesign [213], in that domain the hardware compo-
nents of the architecture have mostly been considered nonprogrammable and thus
also nonreconfigurable. Techniques developed in this context can, nevertheless, be
adapted for mapping computations to multiple computing engines in reconfigurable
architectures.

To effectively address the complexity of the problem of partitioning and map-
ping of computations to reconfigurable architectures, tools will undoubtedly have to
rely on accurate resource and execution time modeling/estimation techniques [242]
with which they can quickly assess a key issue in partitioning: profitability. In addi-
tion, researchers will have to develop generalized spatial and temporal partitioning
algorithms capable of coping with the ability of the reconfigurable resources to im-
plement, in a time-multiplexed fashion, diverse hardware templates throughout the
execution of the application.

7.2.4 Code Transformations

Low-level and instruction-level transformations have been intensively explored in
hardware high-level synthesis (see, e.g., [210]). Transformations for high-level con-
structs, in particular functions and loops, however, have only recently been ad-
dressed (see, e.g., [139]).

7.2 Research Directions in Compilation for Reconfigurable Architectures 183

Existing efforts on compilation to hardware have leveraged the encapsulation
provided by functions to effectively define, in many instances, the scope of the map-
ping process. Support for recursive functions is nevertheless commonly ignored.
This is particularly important in the context of functional descriptions where al-
gorithmic solutions, naturally, have recursive formulations. A subset of recursive
functions known as tail-recursive functions” can be easily transformed to iterative
formulations. Other more general recursive functions still require new code trans-
formation and implementation techniques to be efficiently implemented in reconfig-
urable architectures.

Loop constructs have also provided a fruitful domain for code transformations,
in particular for loop constructs with compile-time known bounds that manipulate
array variables using affine index functions [186]. These constructs exhibit very reg-
ular behavior for which a wealth of transformations and analyses from the arena of
parallelizing compilation can be applied [12]. As described in Chap. 4, however, the
application of these transformations, when targeting reconfigurable architectures, is
far from trivial. Their indiscriminate application can quickly lead to a shortage of
hardware resources and thus infeasible implementations. In this context it is thus
important to develop high-level models of the application of transformations, possi-
bly combined with estimation, to effectively predict the characteristics of the corre-
sponding hardware implementations.

7.2.5 Design-Space Exploration and Compilation Time

To be practical, compilers for reconfigurable computing architectures need to
provide programmers with feasible compilation times, possibly comparable to
compilation times experienced when targeting traditional architectures. This is a
challenge, as compilers for reconfigurable architectures require substantially more
sophisticated mapping and transformations processes, in particular during its opti-
mization and back-end phases.

Of particular significance is the complexity raised by the diversity of architec-
ture characteristics and the large number of mapping and transformation choices,
leading to huge implementation spaces [2]. Exploring these spaces and generating
an implementation for each possible design-space point are clearly infeasible, typi-
cally leaving designers with two very unsatisfying options: either wait for an explo-
ration of several design points which leads to a global extremely long compilation
and synthesis time, possibly days or weeks or settle for a suboptimal or even low-
performing design.

Three key techniques have been pursued to ameliorate or mitigate the design-
space exploration issues compilers face for reconfigurable architectures. These tech-
niques focus on the most demanding phases of a compilation and synthesis flow,

2 In tail-recursive functions, the recursive call is the last operation of the function, i.e., there are no
pending operations at each recursive call.

184 7 Perspectives on Programming Reconfigurable Computing Platforms

respectively, the selection of which mapping and code transformations to apply and
the actual generation of the bit-streams to configure the target architecture:

o Estimation: The use of estimation and modeling [180,290] has been shown to be
a very effective technique to reduce design exploration time. A key issue for this
promising approach, however, and in particular for fine-grained reconfigurable
architectures, is the ability of deriving accurate estimates [43,49, 180] in feasible
time, while still allowing the compiler to make correct mapping decisions.

e Module Generation: The use of module generators integrated with the DFG
(data-flow graph) representing the overall program enables the specialization
of each module instance without incurring in long code generation times. The
use of preplaced and prerouted soft-macros is a key technique in this setting.
The key issue, in particular for coarse-grained reconfigurable architectures, lies
in the ability not to excessively fragment the overall hardware implementation.
In addition, module generators can also interact synergetically with estimation
models for providing accurate estimates for the various parameter settings they
are designed for.

e Placement and Routing: Compared to traditional placement approaches com-
monly based on simulated annealing [266], strategies based on faster algorithms,
such as force-directed approaches [219] or approaches combining clustering and
hierarchical simulated annealing [269], have yielded very short execution times
with acceptable results. The development of alternative placement and routing
algorithms, possibly customized for specific architectures, is a very desirable and
promising approach that must be validated for arbitrary input computations in
terms of mapping time and quality of the resulting mapping.

Although some preliminary evidence exists to suggest that these approaches are
very effective in reducing the compilation and synthesis time for reconfigurable
architectures (see, e.g., estimation [288]), they need to be generalized in the presence
of changing application requirements and evolving architecture characteristics.

7.2.6 Pipelined Execution

Pipelining is an extremely effective execution technique when mapping loop
constructs to reconfigurable architectures. Common loop pipelining schemes rely
exclusively on static scheduling knowledge to derive the definition of the pipeline
stages. They often assume specific latencies for PEs or FUs that compose their
stages thus leading to suboptimal implementations.

In practice the application of loop pipelining techniques is limited to nor-
malized, well-behaved loops with statically determined loop carried dependences.
Aggressive loop pipelining techniques are required to deal with a wider spectrum of
loops, possibly using dynamic analyses and data-dependence analyses techniques,
so that compilers are not unnecessarily constrained in the mapping to the reconfig-
urable architectures of many real-life applications.

7.2 Research Directions in Compilation for Reconfigurable Architectures 185

While there has been plenty of techniques developed for loop pipelining, these
efforts have mostly focused on the pipelining of innermost loops in a nest. Exploit-
ing coarse-grained forms of pipelining (e.g., at task level) [263,353] at an outer most
loop level [46] has only recently been addressed and the combination of both forms
of pipelining for more general computation cases is still an open area of research.

7.2.7 Memory Mapping Optimizations

The diversity and the number of distributed memory resources in advanced reconfig-
urable architectures create an exceedingly complex data partitioning, mapping, and
management problem. As with traditional architectures, the local registers (usually
in a very limited number) have extremely low access time and off-chip memory with
much higher capacity. Internal memories represent a compromise between access
time and capacity, but need to be managed explicitly. This problem is exacerbated
by the possibility of memory customization and nonuniformity of data access time
even within the same storage category. This is for example the case when mapping
data to block RAMs in FPGAs which can be located fairly close to an FU or fairly
distant, thus possibly requiring additional clock cycles to access.

A key to address the complexity of this mapping and management problem lies,
very likely, on the development of sophisticated algorithms (e.g., [27]) that can
cope with the diversity of the target storage structures. As with the application
of other transformations, modeling and estimation of data access times for each
mapping/allocation should guide the search to quickly find an efficient memory
structure design and corresponding data mapping process.

7.2.8 Application-Specific Compilers and Cores

Specific applications and domains can clearly justify the development of compil-
ers with powerful optimizations that explore specific domain knowledge or specific
target architecture characteristics. For example, instances of particular digital fil-
ters (e.g., Finite Impulse Response filters) with particular coefficient values can be
efficiently mapped to reconfigurable architectures with very specific mapping and
transformation algorithms. This approach can also be complemented by the inclu-
sion in the target architectures of application-specific cores, organized as softcores
or hard-macros, possibly defining an architectural layer with parameterized libraries
of cores or building blocks.

These domain/architecture-specific compilers will very likely include simplified
variants of the steps of the compilation and synthesis flows described in Chap. 3.
Still, and given the many design choices, they will undoubtedly have to inter-
nally engage in a selected form of design-space exploration to generate optimized

186 7 Perspectives on Programming Reconfigurable Computing Platforms

reconfigurable computing implementations. A very desirable goal in the construc-
tion of such domain-specific compilation tools is the development of compiler de-
sign methodologies that would allow compiler designers to build, and more impor-
tantly maintain and adapt, the compilation flows to evolving target reconfigurable
architectures.

7.2.9 Resource Virtualization

Resource and execution model virtualization are elegant ways to deal with the di-
versity and the limitations of hardware resources in reconfigurable architectures.
Virtualization, albeit at a possible loss of peak performance, can provide the key to
application and programmer portability.

Using virtualization, a programmer, or a library designer, would define abstract
virtual machines and virtual resources whereby a model of execution, or abstract
resource operations, is specified through primitive data movement and execution
operations. Basic pipelining, VLIW, parallel execution, and synchronization would
be specified at an abstract level and mapped to specific execution models, supported
by the underlying architecture, using an intermediate mapping tool. The closer these
abstract operations are to the modes and the instruction natively supported by the
architecture, the more efficient the final hardware implementation is.

7.2.10 Dynamic and Incremental Compilation

Current compilation flows are too rigid as programmers must endure long compi-
lation cycles, for the definition of a suitable reconfigurable computing implementa-
tion. A possible avenue for mitigating the issues related to long compilation cycles
would include the use of dynamic Just-In-Time (JIT) and incremental compilation
techniques. A first, quick translation to possible not very efficient mappings, using
only the regions of the input code exercised, would allow the execution to proceed
as quickly as possible. As the execution would progress, a run-time system would
trigger a recompilation of the more frequently exercised structures for recompila-
tion, this time with the benefit of the knowledge of key specific program values.
A similar approach was explored by Schmit et al. [274] for dynamic translation to
hardware of traditional binary instructions. Additionally, JIT compilation can be an
enabling technology to allow portability among different reconfigurable computing
platforms.

While appealing, this notion of JIT compilation and incremental refinement of
an implementation presents its challenges. For instance, if placement and routing is
already complex as an off-line process, using a dynamic approach seems a daunting
prospect. While the abundance of hardware resources in current target architectures

7.3 Tackling the Compilation Challenge for Reconfigurable Architectures 187

(in particular for fine-grained architectures) might not make the loss of device occu-
pancy an issue, the loss of performance of the resulting designs might be a concern.

7.3 Tackling the Compilation Challenge for Reconfigurable
Architectures

We now outline a conceptual compilation flow that aims at mitigating many of
the issues arising when compiling high-level programming languages to recon-
figurable architectures. The proposed flow, depicted in Fig.7.1, would augment,
in a synergetical way, a traditional compilation flow with three key techniques,
namely, Aspect-Oriented programming [103, 174], History-based and Learning-
based techniques, and Resource Virtualization techniques. In addition, the flow
would rely on an intermediate domain-specific language, LARA, a LAnguage for

Successive refinement
Refactoring/Rewriting
Code Transformations

Program R .
Machine Learning

A4
Compk_e!ner_\tary Domain-Specific
Specification Transformation Engine Language (DSL)

(Aspects and User- | (Advanced Weaver) LARA
Knowledge)

h

Mapping
Techniques

Architecture

Repository of

Repository of Description
! Templ
Best Practices emplates and Repository X
(Patterns) : Input representation for
of Virtual N
low-level targeting tools
Components

(HDL)

Low-level target specific
| Tools

(RTL Synthesis, Mapping,
Placement and Routing)

(Reconfigurable Fabric)

Fig. 7.1 Envisioned compilation flow

188 7 Perspectives on Programming Reconfigurable Computing Platforms

Reconfigurable Architectures, and the corresponding transformation engine to lever-
age the information provided by the other techniques to explore a wide range of
reconfigurable computing implementations.

As input to this hypothetical flow is an application code, specified using a tra-
ditional imperative programming language, augmented with complementary aspect
specifications using Aspect-Oriented programming techniques, aspects would al-
low programmers to expose domain-specific or algorithm-specific knowledge to the
compiler nonintrusively and without compromising the semantics of the original
specification. Aspects may ensure the application specifications last longer than its
current implementations by not obscuring their description with details used in to-
day’s architectures, which might be obsolete in tomorrow’s architectures.

The knowledge conveyed by the aspects specification, such as data rate and tim-
ing, absent in the input source languages, would be used by the compiler and the
architectural synthesis tools towards the implementation of highly specialized im-
plementations. Aspects would also provide a handle into an extremely important
and often neglected issue when compiling to reconfigurable architectures: test gen-
eration and verification.

The middle-end of the flow includes the core of the transformation engine re-
sponsible for the derivation of the overall hardware implementation. The transfor-
mation engine would map the input program description to a set of virtual hardware
resources and virtual execution modes in the search for a design that is both fea-
sible and meets the input performance specifications. The compiler would match
the input program to the target virtual resources by using a set of transformations
techniques, such as successive refinement, refactoring and term-rewriting, guided
by learning-based techniques using history-based and best-practices knowledge. By
understanding which sets of transformations and corresponding parameters lead to
the best designs for codes with specific input aspects, these repositories will sub-
stantially reduce the size of the design-search-space the compiler would need to
cover in the pursuit of efficient, and correct, designs.

These knowledge repositories can be built either with the help of designers for
specific hardware/software virtual resource patterns or using machine-learning pat-
tern extraction and pattern matching techniques [6, 74]. For a new architecture or a
new set of resource patterns, the approach might be slow in deriving good designs
and thus populating the space of best practices. With time, and with the use on many
additional codes, the system would use the knowledge of previous design mappings
and deliver designs increasingly faster and of increasingly higher quality.

Once the middle-end derives a feasible design, the back-end of the flow would
generate a hardware implementation description by translating the selected virtual
resources into architecture specific data-path and control structures. The flow would
generate this target architecture description using a domain-specific mapping lan-
guage, LARA, which is envisaged to include explicit elements for reconfiguration
and hardware-oriented directives such as data mapping and streaming information.
Lastly, the flow would translate this hardware specification into behavioral RTL-
HDL using either parameterized hardware patterns or programmable hardware tem-
plates for increased efficiency.

7.5 Summary 189

7.4 Reconfigurable Architectures and Nanotechnology

Emerging computational substrates as is the case with nanostructures [262] share
several characteristics with today’s and future silicon-based reconfigurable devices.

First, and like fine-grained reconfigurable architectures, nanoscale computing
systems are spatially organized at the architecture level with diverse mechanisms
for creating, processing, and preserving state. The notion of state might, however,
be distributed in space and time. Second, and unlike today’s reconfigurable devices,
nanostructures are inherently unreliable [93,262]. As a result, the prevailing com-
puting paradigm must explore postfabrication defect avoidance techniques, compu-
tation and data replication, to attain high levels of assurance.

The unreliability of nanostructures makes the establishment of a well-accepted
execution model and programming paradigm for nanostructures even more prob-
lematic than for reconfigurable architectures. Nevertheless, reconfiguration and the
abundance of resources in nanostructures might prove to be effective techniques to
cope with this unreliability.

As with reconfigurable technologies, the key for nanotechnologies to make it as
a mainstream computing paradigm lies in their ability to support a well-established
programming paradigm. This is a major challenge for which the development of pro-
gramming languages and compilation techniques for reconfigurable architectures
will, we believe, play a key role.

7.5 Summary

In this chapter we have provided a perspective on programming reconfigurable com-
puting platforms and what we believe are the key major issues to make this promis-
ing computing paradigm a reality. In this context, we have outlined the most relevant
and challenging topics related to compilation to these architectures. We described a
vision for a compilation system that aims at mitigating many of the problems that
plague today’s compilation approaches. This vision relies on several techniques al-
ready shown to be effective in other domains, but which have not yet been combined
in the context of compiling to reconfigurable architectures. Lastly, we have briefly
highlighted the similarities between current reconfigurable computing devices and
emerging nanoscale computing systems, pointing out that the techniques currently
developed for reconfigurable computing might prove to be a key enabling factor for
these technologies.

Chapter 8
Final Remarks

Despite the tremendous progress made over the last decade, efficient automatic com-
pilation from high-level programming languages to reconfigurable architectures,
widely believed to be the key to make this promising technology the dominant com-
puting paradigm, still remains an elusive goal.

Several aspects of the compilation process conspire to this effect. First, and
foremost, compiler must bridge a widening semantic gap between the high-level
imperative programming languages pervasive in existing software basis and the
hardware-oriented programming languages required to define the underlying com-
puting architecture. Second, the lack of an accepted high-level programming par-
adigm, particularly suited for reconfigurable architectures, further exacerbates the
complexity of the compilation process. This fact hampers the establishment of a
stable, widely available compilation framework, as well as the definition of bench-
mark codes for qualitative and quantitative compiler and architecture performance
analysis. Third, to reach acceptable performance, compilers must apply a plethora of
code transformations and mapping techniques at the software and hardware levels.
These transformation and mapping processes are extremely bridle as transforma-
tions often interfere, forcing the compiler to explore a wide range of transformation
combinations and to negotiate a trade-off between compilation time and the quality
of final hardware implementations. Lastly, compilers may have to include hardware
synthesis steps in their flows, often by the integration of commercial synthesis tools.
Despite the maturity of the techniques used by these tools, the inherent algorithmic
complexity of synthesis-related steps leads to extremely long, and unacceptable,
compilation times for the average programmer. The relentless increase in device ca-
pacity and the rapid evolution of reconfigurable architectures further exacerbate this
problem.

These compilation challenges are, we believe, not insurmountable, prompting
many research opportunities for the development of alternative compilation tech-
niques at various levels. Two areas are of particular interest. The first area in-
cludes the definition of newer high-level programming languages and translation
approaches from binary code directly to reconfigurable hardware, thus promoting
programmer and program portability. The second area includes the modeling of the

J.M.P. Cardoso, P.C. Diniz, Compilation Techniques for Reconfigurable Architectures, 191
DOI 10.1007/978-0-387-09671-1_8,
© Springer Science+Business Media LLC 2009

192 8 Final remarks

impact of code transformations and mapping techniques on resources and execution
time. This modeling, when coupled with history-based and/or learning techniques,
will lead to the reduction of compilation and synthesis times. This reduction, in
turn, will ultimately allow compilers to explore a wide range of design choices in
the search for efficient reconfigurable computing implementations, thereby promot-
ing performance portability.

Compilation for reconfigurable architectures will very likely also play an im-
portant role in emerging computational paradigms. This is the case with nanoscale
computing, where high defect rates of nanostructures may require these architec-
tures to strongly rely on cell replication and cell reconfiguration. In addition to low-
level programming abstractions that capture and cope with the unreliability of such
computing environments, compilers will be instrumental in isolating the program-
mer from the peculiar low-level characteristics of these architectures, while offering
a familiar stable computing paradigm.

We believe compilation techniques for reconfigurable computing platforms offer
many exciting research and development opportunities. We hope this book, to our
knowledge the first book completely dedicated to the topic of compilation for re-
configurable architectures, will motivate further research efforts in this domain and
serve as a base for a deeper understanding of the overall compilation and synthesis
problems, current solutions, and open issues.

References

W AW

10.

11.

13.
14.

15.

. Aamodt, T., Chow, P.: Embedded ISA Support for Enhanced Floating-Point to Fixed-Point

ANSI-C Compilation. In: Proc. of the 2000 Intl. Conf. on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES’00), pp. 128-137. ACM Press, New York, NY, USA
(2000)

. Abraham, S., Rau, B., Schreiber, R.: Fast Design Space Exploration Through Validity and

Quality Filtering of Subsystem Designs. Tech. Rep. HPL-2000/98. Hewlett-Packard Corp.,
Palo Alto, CA, USA (2000)

. AccelChip, Inc.: URL http://www.accelchip.com
. ACE, Corp.: DSP-C Specification (2001). URL http://www.dsp-c.org
. Actel, Corp.: Reconfigurable Programmable Interconnect Architecture. US Patent 5,187,393

(1969)

. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., OBoyle, M., Thomson, J.,

Toussaint, M., Williams, C.: Using Machine Learning to Focus Iterative Optimization. In:
Proc. of the 2006 Intl. Symp. on Code Generation and Optimization (CGO’06), pp. 295-
305. IEEE Computer Society Press, Los Alamitos, CA, USA (2006)

. Agarwal, L., Wazlowski, M., Ghosh, S.: An Asynchronous Approach to Efficient Execution

of Programs on Adaptive Architectures Utilizing FPGAs. In: Proc. of 2nd IEEE Workshop on
Field-Programmable Custom Computing Machines (FCCM’94), pp. 101-110. IEEE Com-
puter Society Press, Los Alamitos, CA, USA (1994)

. Agesen, O., Holzle, U.: Type Feedback vs. Concrete Type Inference: A Comparison of Opti-

mization Techniques for Object-Oriented Languages. In: Proc. of the 10th ACM Conf. on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’95), pp.
91-107. ACM Press, New York, NY, USA (1995)

. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools.

Addison Wesley, 2 edition, August 31 (2006)

Aigner, G., Diwan, A., Heine, D., Lam, M., Moore, D., Murphy, B., Sapuntzakis, C.: An
Overview of the SUIF2 Compiler Infrastructure. Tech. Rep. Stanford University, Palo Alto,
CA, USA (2000)

Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control Dependence to Data
Dependence. In: Proc. of the 10th ACM Symp. on Principles of Programming Languages
(POPL’83), pp. 177-189. ACM Press, New York, NY, USA (1983)

. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-

Based Approach. Morgan Kaufmann Pub., Inc., San Francisco, CA, USA (2001)

Altera, Corp.: URL http://www.altera.com

Altera, Corp.: Programmable Logic Array Device Using EPROM Technology. US Patent
4,774,421 (1989)

Altera, Corp.: Stratix =~ Programmable Logic Device Family Data Sheet 1.0 (2002). URL
http://www.altera.com

193

194

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

References

. Altera, Corp.: Nios II® Processor Reference Handbook (2007). URL http://www.altera.
com

Amerson, R., Carter, R., Culbertson, W., Kuekes, P., Snider, G.: Teramac-Configurable Cus-
tom Computing. In: Proc. of the 3rd IEEE Workshop on FPGA’s for Custom Computing
Machines (FCCM’95), pp. 32-38. IEEE Computer Society Press, Los Alamitos, CA, USA
(1995)

Anderson, J., Amarasinghe, S., Lam, M.: Data and Computation Transformations for Multi-
processors. In: Proc. of the 1995 ACM Conf. on Programming Language Design and Imple-
mentation (PLDI’95), pp. 166—-178. ACM Press, New York, NY, USA (1995)

Annapolis Microsystems, Inc.: Wildstar Reconfigurable Computing Engines. User’s Man-
ual R3.3 (1999)

Athanas, P.: An Adaptive Machine Architecture and Compiler for Dynamic Processor Re-
configuration. Ph.D. thesis, Brown University, Providence, Rhode_Island, USA (1992)
Athanas, P., Silverman, H.: Processor Reconfiguration Through Instruction-Set Metamor-
phosis: Architecture and Compiler. IEEE Computer 26(3), 11-18 (1993)

August, D., Sias, J., Puiatti, J.M., Mahlke, S., Connors, D., Crozier, K., Hwu, W.: The Pro-
gram Decision Logic Approach to Predicated Execution. In: Proc. of the 26th Annual Intl.
Symp. on Computer Architecture ISCA’99), pp. 208-219. ACM Press, New York, NY, USA
(1999)

Babb, J.: High-Level Compilation For Reconfigurable Architectures. Ph.D. thesis, Massa-
chusetts Institute of Technology (MIT), Boston, MA, USA (2000)

Babb, J., Rinard, M., Moritz, C., Lee, W., Frank, M., Barua, R., Amarasinghe, S.: Paral-
lelizing Applications into Silicon. In: Proc. of the 7th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM’99), pp. 70-80. IEEE Computer Society Press, Los
Alamitos, CA, USA (1999)

Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Bachmann, C., Haldar, M., Joisha, P.,
Jones, A., Kanhare, A., Nayak, A., Periyacheri, S., Walkden, M., Zaretsky, D.: A Matlab
Compiler for Distributed, Heterogeneous, Reconfigurable Computing Systems. In: Proc. of
the 8th IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM’00), pp.
39-48. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)

Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.: Automatic Program Parallelization.
Proc. of the IEEE 81(2), 211-243 (1993)

Baradaran, N., Diniz, P.: Memory Parallelism Using Custom Array Mapping to Heteroge-
neous Storage Structures. In: Proc. of the Intl. Conf. on Field Programmable Logic (FPL’06),
pp- 383-388. Madrid, Spain, August 28-30 (2006)

Baradaran, N., Diniz, P., Park, J.: Extending the Applicability of Scalar Replacement to Mul-
tiple Induction Variables. In: Proc. of the 17th Workshop on Languages and Compilers for
Parallel Computing (LCPC’04), Lecture Notes on Computer Science (LNCS), vol. 3602, pp.
455-469. Springer-Verlag (2004)

Baradaran, N., Park, J., Diniz, P.: Compiler Reuse Analysis for the Mapping of Data in FP-
GAs with RAM Blocks. In: Proc. of the IEEE Intl. Conf. on Field-Programmable Technology
(FPT’04), pp. 145-152, Brisbane, Australia, December 6-8 (2004)

Barua, R., Lee, W., Amarasinghe, S., Agarwal, A.: Compiler Support for Scalable and Effi-
cient Memory Systems. IEEE Trans. Computers 50(11), 1234-1247 (2001)

Baumgarte, V., Ehlers, G., May, F., Niickel, A., Vorbach, M., Weinhardt, M.: PACT XPP® _
A Self-Reconfigurable Data Processing Architecture. J. Supercomputing 26(2), 167-184
(2003)

Beck, G., Yen, D., Anderson, T.: The Cydra 5 Minisupercomputer: Architecture and Imple-
mentation. J. Supercomputing 7(1-2), 143-180 (1993)

Becker, J., Glesner, M.: A Parallel Dynamically Reconfigurable Architecture Designed for
Flexible Application-Tailored Hardware/Software Systems in Future Mobile Communica-
tion. J. Supercomputing 19(1), 105-127 (2001)

Becker, J., Hartenstein, R., Herz, M., Nageldinger, U.: Parallelization in Co-Compilation
for Configurable Accelerators. In: Proc. of the 1998 Asia South Pacific Design Automation
Conference (ASP-DAC’98), pp. 23-33, Yokohama, Japan, February 10-13 (1998)

References 195

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

Becker, J., Vorbach, M.: Architecture, Memory and Interface Technology Integration of
an Industrial/Academic Configurable System-on-Chip (CSoC). In: Proc. of the 2003 IEEE
Symp. on VLSI (ISVLSI’03), p. 107. IEEE Computer Society Press, Los Alamitos, CA, USA
(2003)

Bellows, P., Hutchings, B.: JHDL-An HDL for Reconfigurable Systems. In: Proc. of the 6th
IEEE Symp. on FPGA for Custom Computing Machines (FCCM’00), pp. 175-184. IEEE
Computer Society Press, Los Alamitos, CA, USA (1998)

Benini, L., Micheli, G.D.: Networks on Chips: A New SoC Paradigm. IEEE Computer 35,
70-78 (2002)

Bernstein, R.: Multiplication by Integer Constants. Software Practice Experience 16(7),
641-652 (1986)

Betz, V., Rose, J.: VPR: A New Packing, Placement and Routing Tool for FPGA Re-
search. In: Proc. of the 1997 Intl. Workshop on Field Programmable Logic and Applications
(FPL’97), pp. 213-222, London, UK, September 1-3, 1997. Lecture Notes in Computer Sci-
ence (LNCS), vol. 1304, Springer (1997)

Bilavarn, S., Gogniat, G., Philippe, J.L.: An Estimation and Exploration Methodology from
System-Level Specifications. In: Proc. of the 11th ACM Intl. Symp. on Field-Programmable
Gate Arrays (FPGA’03), p. 239. ACM Press, New York, NY, USA (2003)

Biswas, P, Banerjee, S., Dutt, N., Pozzi, L., Ienne, P.: ISEGEN: An Iterative Improvement-
Based ISE Generation Technique for Fast Customization of Processors. IEEE Trans. Very
Large Scale Integration (VLSI) Systems 14(7), 754-762 (2006)

Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware Design in Haskell. In: Proc.
of the 3rd ACM Intl. Conf. on Functional programming (ICFP’98), pp. 174-184. ACM Press,
New York, NY, USA (1998)

Bjuréus, P., Millberg, M., Jantsch, A.: FPGA Resource and Timing Estimation from Mat-
lab Execution Traces. In: Proc. of the 10th Intl. Symp. on Hardware/Software Codesign
(CODES’02), pp. 31-36. ACM Press, New York, NY, USA (2002)

Bohm, W., Draper, B., Najjar, W., Hammes, J., Rinker, R., Chawathe, M., Ross, C.: One-
Step Compilation of Image Processing Applications to FPGAs. In: Proc. of the the 9th IEEE
Symp. on Field-Programmable Custom Computing Machines (FCCM’01), pp. 209-218.
IEEE Computer Society Press, Los Alamitos, CA, USA (2001)

Bohm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C., Rinker, R., Najjar, W.: Mapping
a Single Assignment Programming Language to Reconfigurable Systems. J. Supercomputing
21(2), 117-130 (2002)

Bondalapati, K.: Parallelizing of DSP Nested Loops on Reconfigurable Architectures Using
Data Context Switching. In: Proc. of the 38th ACM/IEEE Design Automation Conference
(DAC’01), pp. 273-276. ACM Press, New York, NY, USA (2001)

Bondalapati, K., Diniz, P., Duncan, P., Granacki, J., Hall, M., Jain, R., Ziegler, H.: DE-
FACTO: A Design Environment for Adaptive Computing Technology. In: Proc. of the 6th
Reconfigurable Architectures Workshop (RAW’98), Lecture Notes on Computer Science
(LNCS), vol. 1388, pp. 570-578. Springer-Verlag (1999)

Bondalapati, K., Prasanna, V.: Dynamic Precision Management for Loop Computations on
Reconfigurable Architectures. In: Proc. of the 7th IEEE Symp. on Field-Programmable Cus-
tom Computing Machines (FCCM’99), pp. 249-258. IEEE Computer Society Press, Los
Alamitos, CA, USA (1999)

Brandolese, C., Fornaciari, W., Salice, F.: An Area Estimation Methodology for FPGA Based
Designs at SystemC-level. In: Proc. of the 41st ACM/IEEE Design Automation Conference
(DAC’04), pp. 129-132. ACM Press, New York, NY, USA (2004)

Brasen, D., Saucier, G.: Using Cone Structures for Circuit Partitioning into FPGA Packages.
IEEE Trans. Computer-Aided Design Integrated Circuits Sys. 17(7), 592-600 (1998)
Brayton, R., Angiovanni-Vincentelli, A., Murgai, R.: Logic Synthesis for Field-Pro-
grammable Gate Arrays. Kluwer Academic, Inc. (1995)

Briggs, P., Cooper, K., Torczon, L.: Improvements to Graph Coloring Register Allocation.
ACM Trans. Program. Lang. Syst. 16(3), 428-455 (1994)

196

53

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

References

. Brooks, D., Martonosi, M.: Dynamically Exploiting Narrow Width Operands to Improve
Processor Power and Performance. In: Proc. of the 5th Intl. Symp. on High Performance
Computer Architecture (HPCA’99), pp. 13-22. IEEE Computer Society, Washington, DC,
USA (1999)

Brown, S., Rose, J.: FPGA and CPLD Architectures: A Tutorial. IEEE Design Test Comput-
ers 13(2), 42-57 (1996)

Budiu, M., Goldstein, S.: Fast Compilation for Pipelined Reconfigurable Fabrics. In: Proc.
of the 7th ACM Intl. Symp. on Field Programmable Gate Arrays (FPGA’99), pp. 195-205.
ACM Press, New York, NY, USA (1999)

Budiu, M., Goldstein, S., Sakr, M., Walker, K.: Bitvalue Inference: Detecting and Exploiting
Narrow Bit-width Computations. In: Proc. of the 6th Intl. European Conf. on Paralle] Com-
puting (EuroPar’00), Lecture Notes on Computer Science (LNCS), vol. 1900, pp. 969-979.
Springer-Verlag (2000)

Butts, M., DeHon, A., Goldstein, S.: Molecular Electronics: Devices, Systems and Tools for
Gigagate, Gigabit Chips. In: Proc. of the 2002 IEEE/ACM Intl. Conf. on Computer-Aided
Design (ICCAD’02), pp. 433—440. IEEE Computer Society Press, Los Alamitos, CA, USA
(2002)

Cadambi, S., Goldstein, S.: Efficient Place and Route for Pipeline Reconfigurable Architec-
tures (2000). In: Proc. of the IEEE International Conference on Computer Design: VLSI in
Computers & Processors (ICCD’00), Austin, Texas, USA, 2000, IEEE Computer Society,
Washington, DC, USA, pp. 423—429

Callahan, T., Chong, P., DeHon, A., Wawrzynek, J.: Fast Module Mapping and Placement for
Datapaths in FPGAs. In: Proc. of the 6th ACM Symp. on Field Programmable Gate Arrays
(FPGA’98), pp. 123-132. ACM Press, New York, NY, USA (1998)

Callahan, T., Hauser, J., Wawrzynek, J.: The Garp Architecture and C Compiler. Computer
33(4), 62-69 (2000)

Callahan, T., Wawrzynek, J.: Instruction Level Parallelism for Reconfigurable Computing.
In: Proc. of the 8th Intl. Workshop on Field-Programmable Logic and Applications (FPL’98),
Lecture Notes on Computer Science (LNCS), vol. 1482, pp. 248-257. Springer-Verlag (1998)
Callahan, T., Wawrzynek, J.: Adapting Software Pipelining for Reconfigurable Computing.
In: Proc. of the 2000 Intl. Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’00), pp. 57-64. ACM Press, New York, NY, USA (2000)

Cardoso, J.: On Combining Temporal Partitioning and Sharing of Functional Units in Compi-
lation for Reconfigurable Architectures. IEEE Trans. Computers 52(10), 1362-1375 (2003)

Cardoso, J., Neto, H.: An Enhanced Static-List Scheduling Algorithm for Temporal Partition-
ing onto RPUs. In: Proc. of the IFIP X Intl. Conf. on Very Large Scale Integration (VLSI’99),
pp. 485-496. Kluwer Academic Publ. (1999)

Cardoso, J., Neto, H.: Macro-Based Hardware Compilation of Java' Bytecodes into a
Dynamic Reconfigurable Computing System. In: Proc. of the 7th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM’99), pp. 2-11. IEEE Computer Soci-
ety, Los Alamitos, CA, USA (1999)

Cardoso, J., Neto, H.: Compilation Increasing the Scheduling Scope for Multi-Memory-
FPGA-Based Custom Computing Machines. In: Proc. of the 11th Intl. Conf. on Field Pro-
grammable Logic and Applications (FPL’01), Lecture Notes on Computer Science (LNCS),
vol. 2147, pp. 523-533. Springer-Verlag (2001)

Cardoso, J., Neto, H.: Compilation for FPGA-Based Reconfigurable Hardware. IEEE Design
Test Computers 20(2), 65-75 (2003)

Cardoso, J., Weinhardt, M.: XPP-VC: A C Compiler with Temporal Partitioning for the
PACT-XPP Architecture. In: Proc. of the 12th Intl. Workshop on Field Programmable Logic
and Applications (FPL'02), Lecture Notes on Computer Science (LNCS), vol. 975, pp.
864—-874. Springer-Verlag (2002)

Cardoso, J., Weinhardt, M.: From C Programs to the Configure-Execute Model. In: Proc. of
the Conf. on Design, Automation and Test in Europe (DATE’03), pp. 576-581. IEEE Press,
Piscataway, NJ, USA (2003)

References 197

70.

71.

72.

73.

74.

75.
76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Cardoso, J., Weinhardt, M.: Compilation and Temporal Partitioning for a Coarse-Grain Re-
configurable Architecture. In: New Algorithms, Architectures, and Applications for Recon-
figurable Computing, Chap. 9, pp. 105-115. Springer (2005)

Caspi, E.: Empirical Study of Opportunities for Bit-Level Specialization in Word-Based Pro-
grams (2000) M.Sc. Thesis, University of California Berkeley, Berkeley, CA, USA

Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J., DeHon, A.: Stream Computations
Organized for Reconfigurable Execution (SCORE). In: Proc. of the The Roadmap to Recon-
figurable Computing, 10th Intl. Workshop on Field-Programmable Logic and Applications
(FPL’00), Lecture Notes in Computer Science (LNCS), vol. 1896, pp. 605-614. Springer-
Verlag (2000)

Catthoor, F., Danckaert, K., Kulkarni, K., Brockmeyer, E., Kjeldsberg, P., van Achteren, T.,
Omnes, T.: Data Access and Storage Management for Embedded Programmable Processors.
Kluwer Academic Publ. (2002)

Cavazos, J., Dubach, C., Agakov, F., Bonilla, E., O’Boyle, M., Fursin, G., Temam, O.: Auto-
matic Performance Model Construction for the Fast Software Exploration of New Hardware
Designs. In: Proc. of the 2006 Intl. Conf. on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES’06), pp. 24-34. ACM Press, New York, NY, USA (2006)
Celoxica, Ltd.: URL http://www.celoxica.com

Chang, P., Mahlke, S., Chen, W., Warter, N., Hwu, W.M.: IMPACT: An Architectural Frame-
work for Multiple-Instruction-Issue Processors. SIGARCH Comput. Archit. News 19(3),
266-275 (1991)

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Praun, C.,
Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In: Proc.
of the 2005 ACM Intl. Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05), San Diego, CA, USA, October 16-20, 2005, pp. 519-538. ACM
Press (2005)

Chen, D., Cong, J., Pan, P.: FPGA Design Automation: A Survey. Found. Trends Electron.
Des. Autom. 1(3), 139-169 (2006)

Chu, M., Weaver, N., Sulimma, K., DeHon, A., Wawrzynek, J.: Object Oriented Circuit-
Generators in Java. In: Proc. of the 6th IEEE Symp. on FPGAs for Custom Computing Ma-
chines (FCCM’98), pp. 158-166. IEEE Computer Society Press, Los Alamitos, CA, USA
(1998)

Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K.: Application-Specific Processing on
a General-Purpose Core via Transparent Instruction Set Customization. In: Proc. of the 37th
IEEE/ACM Intl. Symp. on Microarchitecture (MICRO), pp. 30-40. IEEE Computer Society
Press, Los Alamitos, CA, USA (2004)

Compton, K., Hauck, S.: Reconfigurable Computing: A Survey of Systems and Software.
ACM Comput. Surv. 34(2), 171-210 (2002)

Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn.
McGraw-Hill Publ. (2002)

Craven, S., Athanas, P.: Examining the Viability of FPGA Supercomputing. EURASIP J.
Embedded Systems 2007(1), 8 pages (2007)

Cronquist, D., Franklin, P., Berg, S., Ebeling, C.: Specifying and Compiling Applications
for RaPiD. In: Proc. of the 6th IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM’98), pp. 116-125. IEEE Computer Society Press, Los Alamitos, CA, USA (1998)
Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang.
Syst. 13(4), 451-490 (1991)

Dehnert, J., Hsu, P, Bratt, J.: Overlapped Loop Support in the Cydra 5. In: Proc. of the 3rd
Intl. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-III), pp. 26-38. ACM Press, New York, NY, USA (1989)

DeHon, A.: Reconfigurable Architectures for General-Purpose Computing. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (1996)

DeHon, A.: The Density Advantage of Configurable Computing. Computer 33(4), 41-49
(2000)

198

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

References

DeHon, A.: Nanowire-Based Programmable Architectures. ACM J. Emerging Technologies
Comput. Systems (JETC) 1(2), 109-162 (2005)

DeHon, A., Hauck, S. (ed.): Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computations. Elsevier (2007)

DeHon, A., Huang, R., Wawrzynek, J.: Hardware-Assisted Fast Routing. In: Proc. of the
10th IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM’02), p. 205.
IEEE Computer Society Press, Los Alamitos, CA, USA (2002)

DeHon, A., Markovsky, Y., Caspi, E., Chua, M., Huang, R. Pozzi, S.P., Yeh, L.,
Wawrzynek, J.: Stream Computations Organized for Reconfigurable Execution. Micro-
processors and Microsystems 30(6), 334-354 (2006)

DeHon, A., Naeimi, H.: Seven Strategies for Tolerating Highly Defective Fabrication. IEEE
Design Test Computers 22(4), 306-315 (2005)

Diniz, P.: Evaluation of Code Generation Strategies for Scalar Replaced Codes in Fine-Grain
Configurable Architectures. In: Proc. of the 13th IEEE Symp. on FPGA for Custom Com-
puting Machines (FCCM’05), pp. 73-82. IEEE Computer Society Press, Los Alamitos, CA,
USA (2005)

Diniz, P., Govindu, G.: Design of a Field-Programmable Dual-Precision Floating-Point
Arithmetic Unit. In: Proc. of the 2006 Inl. Conf. on Field Programmable Logic and Ap-
plications (FPL’06), pp. 1-4. Madrid, Spain (2006)

Diniz, P., Hall, M., Park, J., So, B., Ziegler, H.: Automatic Mapping of C to FPGAs with the
DEFACTO Compilation and Synthesis System. Microprocessors and Microsystems 29(2-3),
51-62 (2005)

Doncev, G., Leeser, M., Tarafdar, S.: High Level Synthesis for Designing Custom Com-
puting Hardware. In: Proc. of 6th IEEE Symp. on Field-Programmable Custom Computing
Machines (FCCM’98), pp. 326-327. IEEE Computer Society Press, Los Alamitos, CA, USA
(1998)

Doshi, G., Krishnaiyer, R., Muthukumar, K.: Optimizing Software Data Prefetches with Ro-
tating Registers. In: Proc. of the 2001 Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’01), pp. 257-267. IEEE Computer Society, Washington, DC, USA (2001)
Duncan, A., Hendry, D., Cray, P.: An Overview of the COBRA-ABS High Level Synthe-
sis System for Multi-FPGA Systems. In: Proc. of 6th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM’98), pp. 106—115. IEEE Computer Society Press, Los
Alamitos, CA, USA (1998)

Duncan, A., Hendry, D., Cray, P.: The COBRA-ABS High Level Synthesis System for Multi-
FPGA Custom Computing Machines. IEEE Trans. Very Large Scale Integration (VLSI) Sys-
tems 9(1), 218-223 (2001)

Ebeling, C., Cronquist, D., Franklin, P.: RaPiD — Reconfigurable Pipelined Data-path. In:
Proc. of the Intl. Workshop on Field Programmable Logic and Applications (FPL95), pp.
126-135. Lecture Notes in Computer Science (LNCS), vol. 1142, Springer-Verlag (1995)
Edwards, S.: High-Level Synthesis from the Synchronous Language Esterel. In: Proc. of the
Intl. Workshop on Logic and Synthesis (IWLS02) (2002). New Orleans, Louisiana, USA,
June 4-7, 2002, pp. 401-406

Elrad, T., Filman, R., Bader, A.: Aspect-Oriented Programming: Introduction. Communica-
tions of the ACM 44(10), pp. 29-32 (2001)

Estrin, G.: Organization of Computer Systems — The Fixed Plus Variable Structure Computer.
In: Proc. of the Western Joint Computer Conference, New York, USA, pp. 33—40 (1960)
Estrin, G., Bussell, B., Turn, R., Bibb, J.: Parallel Processing in a Restructurable Computer
System. IEEE Trans. Computers 12(6), 747-755 (1963)

Estrin, G., Turn, R.: Automatic Assignment of Computations in a Variable Structure Com-
puter System. IEEE Trans. Computers 12(6), 755-773 (1963)

Fekete, S., Kohler, E., Teich, J.: Optimal FPGA Module Placement with Temporal Prece-
dence Constraints. In: Proc. of the Conf. on Design Automation and Test in Europe
(DATE’01), pp. 658-665. IEEE Press, Piscataway, NJ, USA (2001)

References 199

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Fiduccia, C., Mattheyses, R.: A Linear-Time Heuristic for Improving Network Partitions. In:
Proc. of the 19th ACM/IEEE Design Automation Conference (DAC’82), pp. 175-181. ACM
Press, New York, NY, USA (1982)

Filman, R., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley Publ., Boston, MA, USA (2005)

Fisher, J., Faraboschi, P., Young, C.: Embedded Computing: A VLIW Approach to Architec-
ture, Compilers and Tools, 1st edn. Morgan Kaufmann, Inc. (2004)

Freeman, R.: Configurable Electrical Circuit Having Configurable Logic Elements and Con-
figurable Interconnects. US Patent 4,870,302 (1989)

Frigo, J., Gokhale, M., Lavenier, D.: Evaluation of the Streams-C C-to-FPGA Compiler: An
Applications Perspective. In: Proc. of the 9th ACM Intl. Symp. on Field-Programmable Gate
Arrays (FPGA’01), pp. 134-140. ACM Press, New York, NY, USA (2001)

Fujii, T., Furuta, K., Motomura, M., Nomura, M., Mizuno, M., Anjo, K., Wakabayashi, K.,
Hirota, Y., Nakazawa, Y., Ito, H., Yamashina, M.: A Dynamically Reconfigurable Logic
Engine with a Multi-Context/Multi-Mode Unified-Cell Architecture. In: Proc. of the IEEE
Intl. Solid State Circuits Conf. (ISSCC’99), San Francisco, CA, USA, February 15-17,
pp. 364-365 (1999)

Gajski, D., Dutt, N., Wu, A., Lin, S.: High-Level Synthesis, Introduction to Chip and System
Design. Kluwer Academic Pub. (1992)

Gajski, D., Vahid, F., Narayan, S., Gong, J.: Specification and Design of Embedded Systems.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1994)

Galloway, D.: The Transmogrifier C Hardware Description Language and Compiler for
FPGAs. In: Proc. of the 3rd IEEE Workshop on FPGA for Custom Computing Machines
(FCCM’95), pp. 136-144. IEEE Computer Society Press, Los Alamitos, CA, USA (1995)
Galuzzi, C., Bertels, K., Vassiliadis, S.: A Linear Complexity Algorithm for the Automatic
Generation of Convex Multiple Input Multiple Output Instructions. In: Proc. of the 3rd Intl.
Workshop on Applied Reconfigurable Computing (ARC’07), Lecture Notes on Computer
Science (LNCS), vol. 4419, pp. 130-141. Springer (2007)

Galuzzi, C., Panainte, E., Yankova, Y., Bertels, K., Vassiliadis, S.: Automatic Selection of
Application-Specific Instruction-Set Extensions. In: Proc. of the 4th Intl. Conf. on Hard-
ware/Software Codesign and System Synthesis (CODES’06/ISSS’06), pp. 160-165 (2006)
Ganesan, S., Vemuri, R.: An Integrated Temporal Partitioning and Partial Reconfiguration
Technique for Design Latency Improvement. In: Proc. of the Conf. on Design, Automation
and Test in Europe (DATE’00), pp. 320-325. IEEE Press, Piscataway, NJ, USA (2000)
Girkar, M., Polychronopoulos, C.: Automatic Extraction of Functional Parallelism from Or-
dinary Programs. IEEE Trans. Parallel Distributed Systems 3(2), 166—178 (1992)

Gokhale, M., Gomersall, E.: High-Level Compilation for Fine Grained FPGAs. In: Proc. of
the 5th IEEE Symp. on FPGA for Custom Computing Machines (FCCM’97), pp. 165-173.
IEEE Computer Society Press, Los Alamitos, CA, USA (1997)

Gokhale, M., Graham, P.: Reconfigurable Computing: Accelerating Computation with Field-
Programmable Gate Arrays, Ist edn. Springer (2006)

Gokhale, M., Holmes, W., Kopser, A., D. Kunze, D.L., Lucas, S., Minnich, R., Olsen, P.:
SPLASH: A Reconfigurable Linear Logic Array. In: Proc. of the 1990 Intl. Conf. on Parallel
Processing (ICPP’90), Urbana-Champaign, IL, USA, August, pp. 526-532 (1990)

Gokhale, M., Marks, A.: Automatic Synthesis of Parallel Programs Targeted to Dynamically
Reconfigurable Logic Array. In: Proc. of the 5th Intl. Workshop on Field Programmable
Logic and Applications (FPL’95), Lecture Notes on Computer Science (LNCS), vol. 975, pp.
399-408. Springer-Verlag (1995)

Gokhale, M., Stone, J.: NAPA C: Compiling for a Hybrid RISC/FPGA Architecture. In:
Proc. of the 6th IEEE Symp. on FPGAs for Custom Computing Machines (FCCM’98), pp.
126-135. IEEE Computer Society, Washington, DC, USA (1998)

Gokhale, M., Stone, J.: Automatic Allocation of Arrays to Memories in FPGA Processors
with Multiple Memory Banks. In: Proc. of 7th IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM’99), pp. 63—-69. IEEE Computer Society Press, Los Alamitos,
CA, USA (1999)

200

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

References

Gokhale, M., Stone, J., Arnold, J., Kalinowski, M.: Stream-Oriented FPGA Computing in the
Streams-C High Level Language. In: Proc. of the 8th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM’00), pp. 49-56. IEEE Computer Society Press, Los
Alamitos, CA, USA (2000)

Gokhale, M., Stone, J., Gomersall, E.: Co-synthesis to a Hybrid RISC/FPGA Architecture.
J. VLSI Signal Processing Systems Signal Image Video Technol. 24(2), 165-180 (2000)
Goldstein, S., Budiu, M.: The DIL Programming Language. Tech. Rep., Carnegie-Mellon
University, Pittsburgh, PA, USA (1999)

Goldstein, S., Budiu, M., Mishra, M., Venkataramani, G.: Reconfigurable Computing and
Electronic Nanotechnology. In: Proc. of the IEEE 14th Intl. Conf. on Application-Specific
Systems, Architectures and Processors (ASAP 2003), pp. 132—143. The Hague, Netherlands
(2003)

Goldstein, S., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.: PipeRench: A Re-
configurable Architecture and Compiler. Computer 33(4), 70-77 (2000)

Goldstein, S., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R., Laufer, R.:
PipeRench: a Co/Processor for Streaming Multimedia Acceleration. In: Proc. of the 26th An-
nual Intl. Symp. on Computer Architecture (ISCA’99), pp. 28-39. ACM Press, New York,
NY, USA (1999)

Gong, W., Wang, G., Kastner, R.: Storage Assignment During High-Level Synthesis for Con-
figurable Architectures. In: Proc. of the 2005 IEEE/ACM Intl. Conf. on Computer-Aided De-
sign (ICCAD’05). pp. 3—6, IEEE Computer Society Press, Los Alamitos, CA, USA (2005)
Gonzalez, R.: Xtensa — A configurable and Extensible Processor. IEEE Micro 20(2), 60-70
(2000)

Gray, J., Kean, T.: Configurable Hardware: A New Paradigm for Computation. In: Proc. of
the Decennial Caltech Conf. on VLSI on Advanced Research in VLSI, pp. 279-295. MIT
Press, Cambridge, MA, USA (1989)

Guccione, S., Levi, D., Sundararajan, P.: Jbits: Java Based Interface for Reconfigurable
Computing. In: Proc. of the Military and Aerospace Applications of Programmable Devices
and Technologies Conference (MAPLD’0099), pp. 1-9, Laurel, Maryland, USA, September
28-30 (1999)

Guo, Z., Buyukkurt, B., Najjar, W.: Input Data Reuse in Compiling Window Operations onto
Reconfigurable Hardware. In: Proc. 2004 ACM Symp. on Languages, Compilers and Tools
for Embedded Systems (LCTES’04), pp. 249-256. ACM Press, New York, NY, USA (2004)
Guo, Z., Najjar, W.: A Compiler Intermediate Representation for Reconfigurable Fabrics. In:
Proc. of the 16th Intl. Conf. on Field Programmable Logic and Applications (FPL’2006),
pp. 741-744. IEEE Computer Society Press (2006)

Gupta, S., Kam, T., Kishinevsky, M., Rotem, S., Savoiu, N., Dutt, N., Gupta, R., Nicolau, A.:
Coordinated Transformations for High-Level Synthesis of High Performance Microproces-
sor Blocks. In: Proc. of the 39th ACM/IEEE Design Automation Conference (DAC’02),
p- 898. ACM Press, New York, NY, USA (2002)

Gupta, S., Savoiu, N., Kim, S., Dutt, N., Gupta, R., Nicolau, A.: Speculation Techniques for
High Level Synthesis of Control Intensive Designs. In: Proc. of the 38th ACM/IEEE Design
Automation Conference (DAC’01), pp. 269-272. ACM Press, New York, NY, USA (2001)
Haldar, M., Nayak, A., Choudhary, A., Banerjee, P.: A System for Synthesizing Optimized
FPGA Hardware from Matlab. In: Proc. of the 2001 IEEE/ACM Intl. Conf. on Computer-
Aided Design (ICCAD’01), pp. 314-319. IEEE Computer Society Press, Los Alamitos, CA,
USA (2001)

Haldar, M., Nayak, A., Choudhary, A., Banerjee, P., Shenoy, N.: FPGA Hardware Synthesis
From Matlab. In: Proc. of the 14th Intl. Conf. on VLSI Design (VLSID °01), pp. 299-304.
IEEE Computer Society Press, Los Alamitos, CA, USA (2001)

Harrison, W.: Compiler Analysis of the Value Ranges for Variables. IEEE Trans. Software
Eng. 3(3), 243-250 (1977)

Hartenstein, R.: The Microprocessor is No More General Purpose: Why Future Reconfig-
urable Platforms Will Win. In: Proc of the Intl. Conf. on Innovative Systems in Silicon
(ISIS’97), Austin, Texas, USA, October 8-10 (1997)

References 201

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.
159.
160.
161.
162.
163.

164.

165.

166.

Hartenstein, R.: A Decade of Reconfigurable Computing: A Visionary Retrospective. In:
Proc. of the Conf. on Design, Automation and Test in Europe (DATE’01), pp. 642—649.
IEEE Press, Piscataway, NJ, USA (2001)

Hartenstein, R., Becker, J., Kress, R., Reinig, H.: High-Performance Computing Using a
Reconfigurable Accelerator. Concurrency: Practice and Experience 8, 429-443 (1996)
Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Generation of Design Sugges-
tions for Coarse-Grain Reconfigurable Architectures. In: Proc. of the 10th Intl. Workshop on
Field-Programmable Logic and Applications (FPL'00), Lecture Notes on Computer Science
(LNCS), vol. 1896, pp. 389-399. Springer-Verlag, London, UK (2000)

Hartenstein, R., Kress, R.: A Datapath Synthesis System for the Reconfigurable Datapath Ar-
chitecture. In: Proc. of the 1995 Asia Pacific Design Automation Conference (ASP-DAC’95),
Chiba, Japan, Aug. 29 — Sept. 1, pp. 479-484 (1995)

Hartenstein, R., Kress, R., Reinig, H.: A New FPGA Architecture for Word-Oriented Data-
paths. In: Proc. of the 4th Intl. Workshop on Field-Programmable Logic and Applications
(FPL’04), pp. 144-155. Springer-Verlag, London, UK (1994)

Hartley, R.: Optimization of Canonic Signed Digit Multipliers for Filter Design, IEEE Inter-
national Symposium on Circuits and Systems, Singapore, June 11-14, 1991, pp. 1992-1995
(1991)

Hauck, S.: The Roles of FPGAs in Reprogrammable Systems. Proc. of the IEEE 86(4), April
1998, 615-638 (1998)

S.Hauck, Fry, T., Hosler, M., Kao, J.: The Chimaera Reconfigurable Functional Unit. IEEE
Trans. Very Large Scale Integr. Syst. 12(2), 206-217 (2004)

Hauser, J., Wawrzynek, J.: Garp: A MIPS Processor with a Reconfigurable Coprocessor. In:
Proc. of the 5th IEEE Symp. on FPGAs for Custom Computing Machines (FCCM’97), pp.
12-21. IEEE Computer Society Press, Los Alamitos, CA, USA (1997)

Hennesy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, 3rd edn. Mor-
gan Kaufmann Pub., Inc., San Francisco, CA, USA (2003)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc. (1985)

Hormati, A., Clark, N., Mahlke, S.: Exploiting Narrow Accelerators with Data-Centric Sub-
graph Mapping. In: Proc. of the Intl. Symp. on Code Generation and Optimization (CGO’07),
pp. 341-353. IEEE Computer Society Press, Los Alamitos, CA, USA (2007)

Huang, R., Wawrzynek, J., DeHon, A.: Stochastic, Spatial Routing for Hypergraphs, Trees,
and Meshes. In: Proc. of the 11th ACM Intl. Symp. on Field-Programmable Gate Arrays
(FPGA’03), pp. 78-87. ACM Press, New York, NY, USA (2003)

IEEE Computer Society: IEEE 754 Standard for Binary Floating-Point Arithmetic (1985)
The impact research group. URL http://www.crhc.uiuc.edu/Impact/

Impulse Accelerated Technologies, I.: URL http://www.impulsec.com

Inoue, A., Tomiyama, H., Okuma, H., nd, H.K., Yasuura, H.: Language and Compiler for Op-
timizing Data-path Widths of Embedded Systems. IEICE Trans. Fundamentals E§1-A(12),
2595-2604 (1998)

Institute of Electrical and Electronics Engineers (IEEE): 1076-2000 IEEE Standard VHDL
Language Reference Manual (2000)

Institute of Electrical and Electronics Engineers (IEEE): 1364-2001 IEEE Standard Verilog
Hardware Description Language (2001)

Iseli, C., Sanchez, E.: Spyder: A Reconfigurable VLIW Processor using FPGAs. In: Proc. of
the IEEE Workshop. on FPGAs for Custom Computing Machines (FCCM’93), pp. 17-24.
IEEE Computer Society Press, Los Alamitos, CA,USA (1993)

Jones, G., Goldsmith, M.: Programming in OCCAM®?2, Prentice Hall, Englewood Cliffs,
NJ, USA (1989)

Jones, M., Scharf, L., Scott, J., Twaddle, C., Yaconis, M., Yao, K., Athanas, P., Schott, B.:
Implementing an API for Distributed Adaptive Computing Systems. In: Proc. of the 7th
IEEE Symp. on FPGA for Custom Computing Machines (FCCM’00), pp. 222-230. IEEE
Computer Society Press, Los Alamitos, CA, USA (1999)

202

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

References

de Jong, G., Verdonck, B., Wuytack, S., Catthoor, F.: Background Memory Management for
Dynamic Data Structure Intensive Processing Systems. In: Proc. of the 1995 IEEE/ACM Intl.
Conf. on Computer-Aided Design (ICCAD’95), pp. 515-520. IEEE Computer Society Press,
Washington, DC, USA (1995)

Kastrup, B., Bink, A., Hoogerbrugge, J.: ConCISe: A Compiler-Driven CPLD-based Instruc-
tion Set Accelerator. In: Proc. of the 7th IEEE Symp. on Field-Programmable Custom Com-
puting Machines (FCCM’99), pp. 92-101. IEEE Computer Society, Washington, DC, USA
(1999)

Kaul, M., Vemuri, R.: Optimal Temporal Partitioning and Synthesis for Reconfigurable Ar-
chitectures. In: Proc. of the Conf. on Design, Automation and Test in Europe (DATE’98), pp.
389-396. IEEE Press, Piscataway, NJ, USA (1998)

Kaul, M., Vemuri, R.: Temporal Partitioning Combined with Design Space Exploration for
Latency Minimization of Run-Time Reconfigured Designs. In: Proc. of the Conf. on Design,
Automation and Test in Europe (DATE’98), pp. 202-209. IEEE Press, Piscataway, NJ, USA
(1998)

Kaul, M., Vemuri, R., Govindarajan, S., Ouaiss, I.: An Automated Temporal Partitioning and
Loop Fission Approach for FPGA based Reconfigurable Synthesis of DSP Applications. In:
Proc. of the 36th IEEE/ACM Design Automation Conference (DAC’99), pp. 616-622. ACM
Press, New York, NY, USA (1999)

Kerkiz, N.: Development and Experimental Evaluation of Partitioning Algorithms for Adap-
tive Computing Systems. Ph.D. thesis, University of Tennesse, Knoxville, Tennessee, USA
(2000)

Kernighan, B., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs. Bell Sys.
Tech. J. 49, 291-308 (1970)

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-Oriented Programming. In: M. Aksit, S. Matsuoka (eds.) Proc. of the European Con-
ference on Object-Oriented Programming (ECOOP’97), Lecture Notes in Computer Science
(LNCS), vol. 1241, pp. 220-242. Springer-Verlag, Berlin, Heidelberg, and New York (1997)
Kilts, S.: Advanced FPGA Design: Architecture, Implementation, and Optimization. Wiley-
IEEE Press (2007)

Kirkpatrick, S., Gellat, C., Jr., M.V.: Optimization by Simulated Annealing. Science
220(4598), 671-680 (1983)

Kobayashi, S., Kozuka, 1., Tang, W., Landmann, D.: A Software/Hardware Codesigned
Hands Free System on a Resizable Block-floating-point DSP. In: Proc. of the IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP’04), Montreal, Canada, May,
pp. 149-152 (2004)

Koren, 1., Mendelsom, B., Peled, I., Silberman, G.M.: A Data-Driven VLSI Array for Arbi-
trary Algorithms. Computer 21(10), 3043 (1988)

Krupnova, H., Saucier, G.: A Data Reuse Based Compiler Optimization for FPGAs. In: Proc.
of the 9th Intl. Conf. on Field Programmable Logic and Applications (FPL'99), Lecture Notes
on Computer Science (LNCS), vol. 1673, pp. 101-110. Springer-Verlag (1999)

Kulkarni, D., Najjar, W., Rinker, R., Kurdahi, F.: Compile-time Area Estimation for LUT-
based FPGAs. ACM Trans. Des. Autom. Electron. Syst. 11(1), 104—-122 (2006)

Kung, S., Lo, S., Jean, S., Hwang, J.: Wavefront Array Processors-Concept to Implementa-
tion. Computer 20(7), 18-33 (1987)

Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: The MOLEN Media Processor: Design and
Evaluation. In: Proc. of the Intl. Workshop on Application Specific Processors (WASP’05),
New York, USA, September 22, pp. 26-33 (2005)

Lakshmikanthan, P., Govindarajan, S., Srinivasan, V., Vemuri, R.: Behavioral Partitioning
with Synthesis for Multi-FPGA Architectures under Interconnect, Area, and Latency Con-
straints. In: Proc. of the 7th Reconfigurable Architectures Workshop (RAW’00), Lecture
Notes on Computer Science (LNCS), vol. 1800, pp. 924-931. Springer-Verlag (2000)
Lakshminarayana, G., Khouri, K., Jha, N.: Wavesched: A Novel Scheduling Technique for
Control-Flow Intensive Designs. IEEE Trans. Computer-Aided Design Integrated Circuits
Syst. 18(5), 505-523 (1999)

References 203

185.

186.

187.

188.

189.

190.

191.

192.

193.
194.

195.

196.

197.

198.

199.

200.

201.

202.

Lam, M.: Software Pipelining: An Effective Scheduling Technique for VLIW Machines.
In: Proc. of the 1988 ACM Conf. on Programming Language Design and Implementation
(PLDI’88), pp. 318-328. ACM Press, New York, NY, USA (1988)

Lam, M., Wolf, M.: A Data Locality Optimizing Algorithm. In: Proc. of the ACM Conf.
on Programming Language Design and Implementation (PLDI'91), pp. 30-44. ACM Press,
New York, NY, USA (1991)

Lau, D., Pritchard, O., Molson, P.: Automated Generation of Hardware Accelerators with
Direct Memory Access from ANSI/ISO Standard C Functions. In: Proc. of the 14th IEEE
Symp. on Field-Programmable Custom Computing Machines (FCCM’06), pp. 45-56. IEEE
Computer Society, Washington, DC, USA (2006)

Lee, H., Sobelman, G.: FPGA-Based FIR Filters Using Digit-Serial Arithmetic. In: Proc.
of IEEE Intl. ASIC Conference (ASIC’97), Portland, OR, USA, Sept. 7-10, pp. 225-228
(1997)

Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., Amarasinghe, S.: Space-
Time Scheduling of Instruction-Level Parallelism on a RAW Machine. In: Proc. of the 8th
Intl. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), pp. 46-57. ACM Press, New York, NY, USA (1998)

Leong, M., Yeung, M., Yeung, C., Fu, C., Heng, P., Leong, P.: Automatic Floating to Fixed
Point Translation and Its Application to Post-Rendering 3D Warping. In: Proc. of the 7th
IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM’99), pp. 240—
248. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

Lewis, D., van Ierssel, M., Rose, J., Chow, P.: The Transmogrifier-2: a 1 million gate rapid-
prototyping system. IEEE Trans. Very Large Scale Integr. Syst. 6(2), 188—198 (1998)

Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., Stockwood, J.: Hardware-Software
Co-Design of Embedded Reconfigurable Architectures. In: Proc. of the 37th ACM/IEEE
Design Automation Conference (DAC’00), pp. 507-512. ACM Press, New York, NY, USA
(2000)

Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Prentice-Hall, Inc. (1996)
Ling, X., Amano, H.: WASMII: A Data Driven Computer on a Virtual Hardware. In: Proc.
of the IEEE Workshop on FPGAs for Custom Computing Machines (FCCM’93), pp. 33-42.
IEEE Computer Society Press, Los Alamitos, CA, USA (1993)

Ling, X., Amano, H.: WASMII: An MPLD with Data-driven Control on a Virtual Hardware.
J. Supercomputing 9(3), 253-276 (1995)

Liu, H., Wong, D.: Circuit Partitioning for Dynamically Reconfigurable FPGAs. In: Proc.
of the 7th ACM Intl. Symp. on Field Programmable Gate Arrays (FPGA’99), pp. 187-194.
ACM Press, New York, NY, USA (1999)

Luk, W., Wu, T.: Towards a Declarative Framework for Hardware-Software Codesign. In:
Proc. of the 3rd Intl. Workshop on Hardware/software Co-design (CODES’94), pp. 181-188.
IEEE Computer Society Press, Los Alamitos, CA, USA (1994)

Lynch, N., Merritt, M., Weihl, W., Fekete, A.: Atomic Transactions: In Concurrent and Dis-
tributed Systems. Morgan Kaufmann Pub., Inc., San Francisco, CA, USA (1993)
Magenheimer, D., Peters, L., Pettis, K., Zuras, D.: Integer Multiplication and Division on the
HP Precision Architecture. IEEE Trans. Comput. 37(8), 980-990 (1988)

Mahlke, S., Lin, D., Chen, W., Hank, R., Bringmann, R.: Effective Compiler Support for
Predicated Execution Using the Hyperblock. In: Proc. of the 25th IEEE/ACM Intl. Symp.
on Microarchitecture (MICRO), Portland, Oregon, USA, pp. 45-54, IEEE Computer Society
Press, Los Alamitos, CA, USA (1992)

Markovskiy, Y., Caspi, E., Huang, R., Yeh, J., Chu, M., Wawrzynek, J., DeHon, A.: Analysis
of Quasi-Static Scheduling Techniques in a Virtualized Reconfigurable Machine. In: Proc.
of the 10th ACM Intl. Symp. on Field-Programmable Gate arrays (FPGA’02), pp. 196-205.
ACM Press, New York, NY, USA (2002)

Maruyama, T., Hoshino, T.: A C to HDL Compiler for Pipeline Processing on FPGAs. In:
Proc. of the 8th IEEE Symp. on FPGA for Custom Computing Machines (FCCM’00), pp.
101-110. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)

204

203.
204.

205.

206.

207.

208.

209.

210.
211.
212.

213.
214.
215.

216.

217.
218.

219.

220.

221.

222.

223.
224,

225.

References

MathStar, Inc.: URL http://www.mathstar.com

McCanny, J., McWhirter, J., Swartzlander, E.J., (eds.): Systolic Array Processors. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1989)

McKinley, K.S., Carr, S., Tseng, C.W.: Improving Data Locality with Loop Transformations.
ACM Trans. Prog. Lang. Syst. 4(18), 424-453 (1996)

Mei, B., Lambrechts, A., Verkest, D., Mignolet, J.Y., Lauwereins, R.: Architecture Explo-
ration for a Reconfigurable Architecture Template. IEEE Design Test Comput. 22(2), 90-101
(2005)

Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwerein, R.: DRESC: A Retargetable Com-
piler for Coarse-Grained Reconfigurable Architectures. In: Proc. of the IEEE Intl. Conf.
Field-Programmable Technology (FPT’02), pp. 166—-173. IEEE Computer Society Press
(2002)

Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An Architecture with
Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix. In: Proc. of
the 13th Intl. Conf. on Field Programmable Logic and Application (FPL’03), Lecture Notes
on Computer Science (LNCS), vol. 2778, pp. 61-70. Springer-Verlag (2003)

Mencer, O., Morf, M., Flynn, M.: PAM-Blox: High Performance FPGA Design for Adaptive
Computing. In: Proc. of the 6th IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM’98), pp. 167-174. IEEE Computer Society, Washington, DC, USA (1998)

Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Pub. (1994)
Micheli, G.D., Benini, L.: Networks on Chips. Elsevier Science & Technology (2006)
Micheli, G.D., Ernst, R., Wolf, W. (eds.): Readings in Hardware/Software Co-Design.
Kluwer Academic Pub., Norwell, MA, USA (2002)

Micheli, G.D., Gupta, R.: Hardware/Software Co-Design. Proc. IEEE 85(3), 349-365 (1997)
Mick, J., Brick, J.: Bit-Slice Microprocessor Design. McGraw-Hill, Inc., New York, NY,
USA (1980)

Miller, R., Cocker, J.: Configurable Computers: A New Class of General Purpose Machines.
In: Proc. of the Intl. Symp. on Theoretical Programming, Lecture Notes on Computer Science
(LNCS), vol. 5, pp. 285-298. Springer-Verlag (1972)

Mirsky, E., DeHon, A.: MATRIX: A Reconfigurable Computing Device with Reconfigurable
Instruction Deployable Resources. In: Proc. of the 4th IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM’96), pp. 51-72. IEEE Computer Society Press, Los Alamitos,
CA, USA (1996)

Mitrionics, Inc.: URL http://www.mitrionics.com

Miyamori, T., Olukotun, K.: A Quantitative Analysis of Reconfigurable Coprocessors for
Multimedia Applications. In: Proc. of the 6th IEEE Symp. on FPGAs for Custom Computing
Machines (FCCM’98), pp. 2—11. IEEE Computer Society Press, Los Alamitos, CA,USA
(1998)

Mo, F., Tabbara, A., Brayton, R.: A Force-Directed Macro-Cell Placer. In: Proc. of the 2000
IEEE/ACM Intl. Conf. on Computer-Aided Design (ICCAD’00), pp. 177-181. IEEE Com-
puter Society Press, Los Alamitos, CA, USA (2000)

Moll, L., Vuillemin, J., Boucard, P.: High-Energy Physics on DECPeRLe-1 Programmable
Active Memory. In: Proc. of the 3rd ACM Intl. Symp. on Field-Programmable Gate Arrays
(FPGA95), pp. 47-52. ACM Press, New York, NY, USA (1995)

Moore, G.: Cramming More Components onto Integrated Circuits. Electronics 38(8) (1965)
Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann Pub.,
Inc., San Francisco, CA, USA (1997)

Nallatech, Inc.: URL http://www.nallatech.com

Nayak, A., Haldar, M., Choudhary, A., Banerjee, P.: Parallelization of Matlab Applications
for a Multi-FPGA System. In: Proc. of the 9th IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM’01), pp. 1-9. IEEE Computer Society Press, Los Alamitos,
CA, USA (2001)

Nayak, A., Haldar, M., Choudhary, A., Banerjee, P.: Precision and Error Analysis of Matlab
Applications During Automated Hardware Synthesis for FPGAs. In: Proc. of the Conf. on
Design, Automation and Test in Europe (DATE’01), pp. 722-728. IEEE Press, Piscataway,
NJ, USA (2001)

References 205

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.
244,

Nisbet, S., Guccione, S.: The XC6200DS Development System. In: Proc. of the 7th
Intl. Workshop on Field-Programmable Logic and Applications (FPL'97), London, UK,
September 1-3, 1997, Lecture Notes on Computer Science (LNCS), vol. 1304, pp. 61-68.
Springer-Verlag, Heidelberg, Germany (1997)

Ogawa, O., Takagi, K., Itoh, Y., Kimura, S., Watanabe, K.: Hardware Synthesis from C Pro-
grams with Estimation of Bit Length of Variables. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E82-A(11), 2338-2346 (1999)

Ogras, U., Marculescu, R., Lee, H., Choudhary, P., Marculescu, D., Kaufman, M., Nelson, P.:
Challenges and Promising Results in NoC Prototyping Using FPGAs. IEEE Micro 27(5),
86-95 (2007)

Ong, S.W., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D., Bouldin, D.: Au-
tomatic Mapping of Multiple Applications to Multiple Adaptive Computing Systems. In:
Proc. of the 9th IEEE Intl. Symp. on Field-Programmable Custom Computing Machines
(FCCM’01), pp. 10-20. IEEE Computer Society Press, Los Alamitos, CA, USA (2001)
Ouaiss, 1., Govindarajan, S., Srinivasan, V., Kaul, M., Vemuri, R.: An Integrated Partition-
ing and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures. In:
Proc. of the Reconfigurable Architectures Workshop (RAW’98), Springer, 1998, vol. 1388,
Berlin/Heidelberg, pp. 31-36 (1998)

Quaiss, 1., Govindarajan, S., Srinivasan, V., Kaul, M., Vemuri, R.: A Unified Specification
Model of Concurrency and Coordination for Synthesis from VHDL. In: Proc. of the Intl.
Conf. on Information Systems Analysis and Synthesis (ISAS’98), Orlando, Florida, USA,
pp. 771-778 (1998)

Ouaiss, I. Vemuri, R.: Efficient Resource Arbitration in Reconfigurable Computing Envi-
ronments. In: Proc. of the Conf. on Design, Automation and Test in Europe (DATE’00),
pp. 560-566. IEEE Press, Piscataway, NJ, USA (2000)

Quaiss, 1., Vemuri, R.: Hierarchical Memory Mapping During Synthesis in FPGA-Based
Reconfigurable Computers. In: Proc. of the Conf. on Design, Automation and Test in Europe
(DATE’01), pp. 650-657. IEEE Press, Piscataway, NJ, USA (2001)

PACT Technologies AG, Munich, Germany: XPP: The eXtreme Processor Platform. URL
http://www.pactxpp.com

Page, L.: Constructing Hardware-Software Systems from a Single Description. J. VLSI Signal
Processing 12(1), 87-107 (1996)

Page, 1., Luk, W.: Compiling Occam into Field-Programmable Gate Arrays. In: FPGAs, Ox-
ford Workshop on Field Programmable Logic and Applications, pp. 271-283. Abingdon
EE&CS Books, 15 Harcourt Way, Abingdon OX14 INV, UK (1991)

Panainte, E., Bertels, K., Vassiliadis, S.: The MOLEN Compiler for Reconfigurable Proces-
sors. ACM Trans. Embedded Comput. Syst. (TECS) 6 (2007)

Pandey, A., Vemuri, R.: Combined Temporal Partitioning and Scheduling for Reconfigurable
Architectures. In: Proc. SPIE Photonics East Conference, Reconfigurable Technology: FP-
GAs for Computing and Applications, pp. 93—103 (1999)

Parhi, K.: A Systematic Approach for Design of Digit-Serial Signal Processing Architectures.
IEEE Trans. Circuits Syst. 38(4), 358-375 (1991)

Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo Graph Embedding: Mapping Ap-
plications onto Coarse-Grained Reconfigurable Architectures. In: Proc. of the 2006 Intl.
Conf. on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’06),
pp. 136-146. ACM Press, New York, NY, USA (2006)

Park, J., Diniz, P.: Synthesis of Memory Access Controller for Streamed Data Applications
for FPGA-based Computing Engines. In: Proc. of the 14th Intl. Symp. on Systems synthesis
(ISSS’01), pp. 221-226. ACM Press, New York, NY, USA (2001)

Park, J., Diniz, P., Shayee, K.: Performance and Area Modeling of Complete FPGA Designs
in the Presence of Loop Transformations. IEEE Trans. Comput. 53(11), 1420-1435 (2004)
Pellerin, D., Thibault, S.: Practical FPGA Programming in C. Prentice-Hall, Inc. (2005)
Peterson, J., O‘Connor, R., Athanas, P.: Scheduling and Partitioning ANSI-C Programs onto
Multi-FPGA CCM Architectures. In: Proc. of the 4th IEEE Symp. on FPGA for Custom

206

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

References

Computing Machines (FCCM’96), pp. 178—179. IEEE Computer Society Press, Los Alami-
tos, CA, USA (1996)

Pinter, S., Pinter, R.: Program Optimization and Parallelization Using Idioms. In: Proc. of the
18th ACM Symp. on Principles of Programming Languages (POPL'91), pp. 79-92. ACM
Press, New York, NY, USA (1991)

Pozzi, L., Atasu, K., Ienne, P.: Exact and Approximate Algorithms for the Extension of Em-
bedded Processor Instruction Sets. IEEE Trans. Computer-Aided Design Integrated Circuits
Syst. 25(7), 1209-1229 (2006)

Praun, C., Ceze, L., Cascaval, C.: Implict Parallelism with Ordered Transaction. In: Proc. of
the 2007 ACM Symp. on Principles and Practice of Parallel Programming (PPoPP’07). ACM
Press, New York, NY, USA (2007)

Purna, K., Bhatia, D.: Temporal Partitioning and Scheduling Data Flow Graphs for Recon-
figurable Computers. IEEE Trans. Comput. 48(6), 579-591 (1999)

von Radetski, M.: Synthesis of Digital Circuits from Object-Oriented Specifications. Ph.D.
thesis, Oldenburg University, Oldenburg, Germany (2000)

Raimbault, F., Lavenier, D., Rubini, S., Pottier, B.: Fine Grain Parallelism on a MIMD Ma-
chine Using FPGAs. In: IEEE Workshop on FPGAs for Custom Computing Machines, pp.
2-8. IEEE Computer Society Press, Los Alamitos, CA, USA (1993)

Rajan, J., Thomas, D.: Synthesis by Delayed Binding of Decisions. In: Proc. of the 22nd
ACM/IEEE Design Automation Conference (DAC’85), pp. 367-373. ACM Press, New York,
NY, USA (1985)

Ralev, K., Bauer, P.: Realization of Block Floating Point Digital Filters and Application to
Block Implementations. IEEE Trans. Signal Processing 47(4), 1076—1086 (1999)
Ramachandran, L., Narayan, S., Vahid, F., Gajski, D.: Synthesis of Functions and Proce-
dures in Behavioral VHDL. In: Proc. of the 1993 European Design Automation Conference
(EURO-DAC’93), pp. 560-565. IEEE Computer Society Press, Los Alamitos, CA, USA
(1993)

Ramanujam, J., Sadayappan, P.: Compile-Time Techniques for Data Distribution in Distrib-
uted Memory Machines. IEEE Trans. Parallel Distrib. Syst. 2(4), 472482 (1991)

Rau, B.: Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops. In: Proc.
of the 27th Intl. Symp. on Microarchitecture (MICRO), pp. 63—74. ACM Press, New York,
NY, USA (1994)

Rau, B.R., Fisher, J.A.: Instruction-Level Parallel Processing: History, Overview, and Per-
spective. J. Supercomputing 7(1-2), 9-50 (1993)

Razdan, R.: PRISC: Programmable Reduced Instruction Set Computers. Ph.D. thesis, Har-
vard University, Cambridge, MA, USA (1994)

Razdan, R., Smith, M.: A High-Performance Microarchitecture with Hardware-Pro-
grammable Functional Units. In: Proc. of the 27th IEEE/ACM Intl. Symp. on Microarchi-
tecture (MICRO), pp. 172-180. ACM Press, New York, NY, USA (1994)

Reddi, S., Feustel, E.: A Restructurable Computer System. IEEE Trans. Comput. 27(1), 1-20
(1978)

Rinker, R., Carter, M., Patel, A., Chawathe, M., Ross, C., Hammes, J., Najjar, W., Bohm, W.:
An Automated Process for Compiling Dataflow Graphs into Hardware. IEEE Trans. Very
Large Scale Integration (VLSI) Syst. 9(1), 130-139 (2001)

Rivera, G., Tseng, C.W.: Data Transformations for Eliminating Conflict Misses. In: Proc.
of the ACM Conf. on Programming Language Design and Implementation (PLDI’98), pp.
38-49. ACM Press, New York, NY, USA (1998)

Robinett, W., Snider, G., Kuekes, P., Williams, R.: Computing with a Trillion Crummy Com-
ponents. Commun. of the ACM 50(9), 35-39 (2007)

Rodrigues, R., Cardoso, J., Diniz, P.: A Data-Driven Approach for Pipelining Sequences of
Data-Dependent Loops. In: Proc. of the 15th IEEE Symp. on FPGAs for Custom Computing
Machines (FCCM’07), pp. 219-228. IEEE Computer Society Press, Los Alamitos, CA, USA
(2007)

References 207

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

2717.

278.

279.

280.

281.

Rupp, C., Landguth, M., Garverick, T., Gomersall, E., Holt, H., Arnold, J., Gokhale, M.:
The NAPA Adaptive Processing Architecture. In: Proc. of the 6th IEEE Symp. on FPGAs
for Custom Computing Machines (FCCM’98), p. 28. IEEE Computer Society Press, Los
Alamitos, CA, USA (1998)

Rusu, S., Sachdev, M., Svensson, C., Nauta, B.: Trends and Challenges in VLSI Technology
Scaling Towards 100 nm. Tutorial, Proceedings of the ASPDAC 2002/VLSI Design 2002,
Bangalore, India, Jan. 7-11, pp. 16-17 (2002)

Sait, S., Youssef, H.: VLSI Physical Design Automation. McGraw-Hill, Inc., New York, NY,
USA (1994)

Salefski, B., Caglar, L.: Re-configurable Computing in Wireless. In: Proc. of the 38th
ACM/IEEE Design Automation Conference (DAC’01), pp. 178-183. ACM Press, New York,
NY, USA (2001)

Sanchis, L.A.: Multiple-Way Network Partitioning. IEEE Trans. Comput. 38(1), 62-81
(1989)

Sankar, Y., Rose, J.: Trading Quality for Compile Time: Ultra-Fast Placement for FPGAs.
In: Proc. of the 7th ACM Intl. Symp. on Field Programmable Gate Arrays (FPGA’99), pp.
157-166. ACM Press, New York, NY, USA (1999)

Sankaralingam, K., Nagarajan, R., McDonald, R., Desikan, R., Drolia, S., Govindan, M.,
Gratz, P., Gulati, D., Hanson, H., Kim, C., Liu, H., Ranganathan, N., Sethumadhavan, S.,
Sharif, S., Shivakumar, P., Keckler, S., Burger, D.: Distributed Microarchitectural Protocols
in the TRIPS Prototype Processor. In: Proc. of the 39th IEEE/ACM Intl. Symp. on Microar-
chitecture (MICRO), pp. 480-491. IEEE Computer Society, Washington, DC, USA (2006)
dos Santos, L., Heijligers, M., van Eijk, C., van Eijndhoven, J., Jess, J.: A Code-Motion
Pruning Technique for Global Scheduling. ACM Trans. Design Automation Electronic Syst.
5(1), 1-38 (2000)

Schlansker, M., Rau, B.: EPIC: Explicitly Parallel Instruction Computing. Computer 33(2),
37-45 (2000)

Schmit, H., Arnstein, L., Thomas, D., Lagnese, E.: Behavioral Synthesis for FPGA-based
Computing. In: Proc. of the 2nd IEEE Workshop on FPGA for Custom Computing Machines
(FCCM’94), pp. 125-132. IEEE Computer Society Press, Los Alamitos, CA, USA (1994)
Schmit, H., Levine, B., Ylvisaker, B.: Queue Machines: Hardware Compilation in Hardware.
In: Proc. of the 10th IEEE Symp. on FPGA for Custom Computing Machines (FCCM’02),
pp. 77-86. IEEE Computer Society Press (2002)

Schmit, H., Thomas, D.: Address Generation for Memories Containing Multiple Arrays.
IEEE Trans. Computer-Aided Design Integrated Circuits Syst. 17(5), 377-385 (1998)
Séméria, L., Sato, K., Micheli, G.D.: Synthesis of Hardware Models in C with Pointers and
Complex Data Structures. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 9, 743-756
(2001)

Semiconductor Industry Association: International Technology Roadmap for Semi-
conductors (2001). URL http://public.itrsitrs.net/Files/2001 ITRS/.net/Files/2001ITRS/
ExecSumExecSum.pdf

Sharp, R. , Mycroft, A.: A Higher-Level Language for Hardware Synthesis. In: Proc. of
the 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME’01), pp. 228-243. Springer-Verlag, London, UK
(2001)

Shirazi, N., Walters, A., Athanas, P.: Quantitative Analysis of Floating Point Arithmetic on
FPGA-based Custom Computing Machines. In: Proc. of the 3rd IEEE Workshop on FPGA’s
for Custom Computing Machines (FCCM’95), p. 155. IEEE Computer Society Press, Los
Alamitos, CA, USA (1995)

Sikha, E., Simpson, R.: The PowerPC® Architecture: A Specification for a New Family of
RISC Processors. Morgan Kaufmann Pub., Inc., San Francisco, CA, USA (1994)

Singh, H.: Reconfigurable Architectures for Multimedia and Data-Parallel Application Do-
mains. Ph.D. thesis, University of California, Irvine, Irvine, Calif., USA (2000)

208

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.
293.
294.
295.

296.

297.
298.

299.

300.

301.
302.

References

Singh, H., Lee, M., Lu, G., Kurdahi, F., Bagherzadeh, N., Filho, E.: MorphoSys: An In-
tegrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications.
IEEE Trans. Comput. 49(5), 465-481 (2000)

Smith, B.: A Pipelined, Shared Resource MIMD Computer. In: Proc. of the 1978 Intl. Conf.
on Parallel Processing (ICPP’78), pp. 6-8. IEEE Computer Society Press, Los Alamitos, CA,
USA (1978)

Smith, M.: Extending SUIF for Machine-dependent Optimizations. In: Proc. First SUIF
Compiler Workshop, Stanford University, Stanford, CA, USA (1996)

Snider, G.: Performance-constrained Pipelining of Software Loops onto Reconfigurable
Hardware. In: Proc. of the 10th ACM Intl. Symp. on Field-Programmable Gate Arrays
(FPGA’02), pp. 177-186. ACM Press, New York, NY, USA (2002)

Snider, G., Williams, R.: Nano/CMOS Architectures Using a Field-Programmable Nanowire
Interconnect. Nanotechnology 18(3), 035204 (11pp) (2007)

Snider, G. Shackleford, B., Carter, R.: Attacking the Semantic Gap Between Application
Programming Languages and Configurable Hardware. In: Proc. of the 9th ACM Intl. Symp.
on Field-Programmable Gate Arrays (FPGA’0O1), pp. 115-124. ACM Press, New York, NY,
USA (2001)

So, B., Diniz, P., Hall, M.: Using Estimates from Behavioral Synthesis Tools in Compiler-
Directed Design Space Exploration. In: Proc. of the 40th ACM/IEEE Design Automation
Conference (DAC’03). ACM Press, New York, N.Y, USA (2003)

So, B., Hall, M.: Increasing the Applicability of Scalar Replacement. In: Proc. of the Intl.
Conf. on Compiler Construction, Lecture Notes on Computer Science (LNCS), vol. 2985, pp.
185-201. Springer, Berlin/Heidelberg (2004)

So, B., Hall, M., Diniz, P.: A Compiler Approach to Fast Hardware Design Space Exploration
in FPGA-based Systems. In: Proc. of the ACM Conf. on Programming Language Design and
Implementation (PLDI’02), pp. 165-176. ACM Press, New York, NY, USA (2002)

So, B., Hall, M., Ziegler, H.: Custom Data Layout for Memory Parallelism. In: Proc. of the
Intl. Symp. on Code Generation and Optimization (CGO’04), pp. 291-302. IEEE Computer
Society Press, Los Alamitos, CA, USA (2004)

SRC Computers, Inc.: URL http://www.srccomp.com

Starbridge Systems, Inc.: URL http://www.starbridgesystems.com

Steele, R.: SRAM Based Cell for Programmable Logic Devices. US Patent 5,144,582 (1992)
Stefanovic, D., Matonosi, M.: On Availability of Bit-Narrow Operations in General-Purpose
Applications. In: Proc. of the 10th Intl. Workshop on Field-Programmable Logic and Ap-
plications (FPL’00), Lecture Notes on Computer Science (LNCS), vol. 1896, pp. 412-421.
Springer-Verlag, London, UK (2000)

Stephenson, M., Babb, J., Amarasinghe, S.: Bidwidth Analysis with Application to Silicon
Compilation. In: Proc. of the 2000 ACM Conf. on Programming Language Design and Im-
plementation (PLDI’00), pp. 108—120. ACM Press, New York, NY, USA (2000)

Stretch, Inc.: URL http://www.stretchinc.com

Styles, H., Thomas, D., Luk, W.: Pipelining Designs with Loop-Carried Dependencies. In:
Proc. of the 2004 1IEEE Intl. Conf. on Field-Programmable Technology (FPT’04), pp. 255—
262. IEEE Computer Society Press, Los Alamitos, CA, USA (2004)

Sutter, B., Mei, B., Bartic, A., Aa, T.V., Berekovic, M., Mignolet, J.Y., Croes, K., Coene,
P., Cupac, M., Couvreur, A., Folens, A., Dupont, S., Thielen, B., Kanstein, A., Kim, H.S.,
Kim, S.: Hardware and a Tool Chain for ADRES. In: Proc. of the Intl. Workshop on Ap-
plied Reconfigurable Computing (ARC’06), Lecture Notes on Computer Science (LNCS),
vol. 3985, pp. 425-430. Springer, Berlin/Heidelberg (2006)

Synopsys, Inc.: CoCentric" Fixed-Point Designer. URL http://www.synopsys.com/
9%?20products/cocentric_fixedpoint/ cocentric_fixedpoint_ds.html

Synplicity, Inc.: URL http://www.synplicity.com

Takayama, A., Shibata, Y., Iwai, K., Amano, H.: Dataflow Partitioning and Scheduling Algo-
rithms for WASMII, a Virtual Hardware. In: Proc. of the 10th Intl. Conf. on Field Program-
mable Logic and Applications (FPL’01), Lecture Notes on Computer Science (LNCS), vol.
2147, pp. 685-694. Springer, Heidelberg/New York (2000)

References 209

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.
313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

Taylor, M., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H.,
Johnson, P, Lee, J.W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen, V.,
Frank, M., Amarasinghe, S., Agarwal, A.: The RAW Microprocessor: A Computational Fab-
ric for Software Circuits and General-Purpose Programs. IEEE Micro 22(2), 25-35 (2002)
Teifel, J., Manohar, R.: Highly Pipelined Asynchronous FPGAs. In: Proc. of the 12th ACM
Intl. Symp. on Field Programmable Gate Arrays (FPGA’04), pp. 133-142. ACM Press, New
York, NY, USA (2004)

Tensilica, Inc.: URL http://www.tensilica.com

Tessier, R., Burleson, W.: Reconfigurable Computing and Digital Signal Processing: A Sur-
vey. J. VLSI Signal Processing pp. 7-27 (2001)

The MathWorks, Inc.: URL http://www.mathworks.com

Todman, T., Constantinides, G., Wilton, S., Mencer, O., Luk, W., Cheung, P.: Reconfig-
urable Computing: Architectures and Design Methods. IEE Proc. Comput. Digital Tech-
niques 152(2), 193-207 (2005)

Trimberger, S.: Scheduling Designs into a Time-Multiplexed FPGA. In: Proc. of the 6th
ACM Intl. Symp. on Field Programmable Gate Arrays (FPGA’98), pp. 153—-160. ACM Press,
New York, NY, USA (1998)

Tripp, J., Jackson, P., Hutchings, B.: Sea Cucumber: A Synthesizing Compiler for FPGAs. In:
Proc. of the Intl. Conf. on Field Programmable Logic (FPL’02), Lecture Notes in Computer
Science (LNCS), vol. 2438, pp. 51-72. Springer, Heidelberg/New York (2002)

Tripp, J., Peterson, K., Ahrens, C., Poznanovic, J., Gokhale, M.: Trident: An FPGA Compiler
Framework for Floating-Point Algorithms. In: Proc. of the Intl. Conf. on Field Programmable
Logic and Applications (FPL’05), vol. 3203, pp. 317-322. IEEE (2005)

Triscend, Corp.: Triscend A7 CSoC Family. URL http://www.triscend.com

Vahid, F.: Procedure Exlining: a Transformation for Improved System and Behavioral Syn-
thesis. In: Proc. of the 8th Intl. Symp. on System Synthesis (ISSS’95), pp. 84-89. ACM
Press, New York, NY, USA (1995)

Vahid, F.: Functional Partitioning Improvements over Structural Partitioning for Packaging
Constraints and Synthesis: Tool Performance. ACM Trans. Design Automation Electronic
Syst. 3(3), 181-208 (1998)

Vasilko, M., Ait-Boudaoud, D.: Architectural synthesis techniques for dynamically reconfig-
urable logic, Proc. of the 6th Intl. Workshop on Field-Programmable Logic (FPL’96), Lecture
Notes in Computer Science (LNCS), vol. 1142, pp. 290-296, Springer-Verlag, London, UK
(1996)

Vassiliadis, S., Wong, S., Cotofana, S.D.: The MOLEN pu Processor. In: Proc. of the 11th
International Conf. on Field-Programmable Logic and Applications (FPL’01), Lecture Notes
in Computer Science (LNCS), vol. 2147, pp. 275-285. Springer, Heidelberg/New York (2001)
Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte, E.: The
MOLEN Polymorphic Processor. IEEE Trans. Comput. 53(11), 1363—-1375 (2004)
Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W., Hammes, J.: Auto-
matic Compilation to a Coarse-Grained Reconfigurable System-On-Chip. Trans. Embedded
Computing Syst. 2(4), 560-589 (2003)

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,
Finch, P, Barua, R., Babb, J., Amarasinghe, S., Agarwal, A.: Baring It All to Software:
RAW Machines. Computer 30(9), 86-93 (1997)

Walker, R.A., Thomas, D.E.: A Model of Design Representation and Synthesis. In: Proc. of
the 22nd ACM/IEEE Design Automation Conference (DAC’85), pp. 453-459. ACM Press,
New York, NY, USA (1985)

Weinhardt, M.: Portable Pipeline Synthesis for FCCMs. In: Proc. of the 6th Intl. Workshop on
Field-Programmable Logic, Smart Applications, New Paradigms and Compilers (FPL’96),
vol. 1142, pp. 1-13. Springer-Verlag, London, UK (1996)

Weinhardt, M., Luk, W.: Memory Access Optimisation for Reconfigurable Systems. IEE
Proc. Computers Digital Techniques 148(3) (2001)

Weinhardt, M., Luk, W.: Pipeline Vectorization. IEEE Trans. Computer-Aided Design Inte-
grated Circuits Syst. 20(2), 234-233 (2001)

210

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

33s.

336.

337.
338.
339.
340.

341.
342.

343.

344.

345.

References

Willems, M., Biirsgens, V., Keding, H., Grotker, T., Meyr, H.: System Level Fixed-Point
Design Based on an Interpolative Approach. In: Proc. of the 34th ACM/IEEE Design Au-
tomation Conference (DAC’97), pp. 293-298. ACM Press, New York, NY, USA (1997)
Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J., Tjiang, S., Liao, S.W.,
Tseng, C.W., Hall, M., Lam, M., Hennessy, J.: SUIF: an Infrastructure for Research
on Parallelizing and Optimizing Compilers. SIGPLAN Not. 29(12), 31-37 (1994). URL
http://suif.stanford.edu

Wirth, N.: Hardware Compilation: Translating Programs into Circuits. IEEE Computer 31(6),
25-31 (1998)

Wirthlin, M., Hutchings, B.: A Dynamic Instruction Set Computer. In: Proc. of the 3rd IEEE
Workshop on FPGAs for Custom Computing Machines (FCCM’95), pp. 99-107. IEEE Com-
puter Society Press, Los Alamitos, CA, USA (1995)

Wirthlin, M.J., Hutchings, B., Worth, C.: Synthesizing RTL Hardware from Java Byte Codes.
In: Proc. of the 11th Intl. Conf. on Field-Programmable Logic and Applications (FPL’01),
pp. 123-132. Springer-Verlag, London, UK (2001)

Wittig, R., Chow, P.: OneChip: An FPGA Processor with Reconfigurable Logic. In: Proc.
of the 4th IEEE Symp. on FPGAs for Custom Computing Machines, pp. 126—135. IEEE
Computer Society Press, Los Alamitos, CA, USA (1996)

Wo, D., Forward, K.: Compiling to the Gate Level for a Reconfigurable Coprocessor. In:
Proc. of the 2nd IEEE Workshop on FPGA for Custom Computing Machines (FCCM’94),
pp. 147-154. IEEE Computer Society Press, Los Alamitos, CA, USA (1994)

Wolfe, A., Shen, P.: Flexible Processors: A Promising Application-Specific Processor De-
sign Approach. In: Proc. of the 21st Workshop on Microprogramming and Microarchitecture
(MICRO), pp. 30-39. IEEE Computer Society Press, Los Alamitos, CA, USA (1988)
Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1996)

Wolinski, C., Gokhale, M., McCabe, K.: A Polymorphous Computing Fabric. IEEE Micro
22(5), 56-68 (2002)

Wong, D., Leong, H., Liu, C.: Simulated Annealing for VLSI Design. Kluwer Academic
Pub., Norwell, MA, USA (1988)

Wrighton, M., DeHon, A.: Hardware-assisted Simulated Annealing with Application for Fast
FPGA Placement. In: Proc. of the 11th ACM Intl. Symp. on Field Programmable Gate Arrays
(FPGA’03), pp. 33—42. ACM Press, New York, NY, USA (2003)

Wu, P, Michael, M., Praun, C., Nakaike, T., Bordawekar, R., Cain, H., Cascaval, C.,
Chatterjee, S., Chiras, S., Hou, R., Mergen, M., Shen, X., Spear, M., Wang, H., Wang, K.:
Compiler and Runtime Techniques for Software Transactional Memory Optimization. Con-
currency and Computation: Practice and Experience (Special Issue devoted to the 13th Intl.
Workshop on Compilers for Parallel Computing (CPC’07)) 20(1) (2008)

Wauytack, S., Catthoor, F., de Jong, G., Man, H.D.: Minimizing the Required Memory Band-
width in VLSI System Realizations. IEEE Trans. VLSI Syst. 7(4), 433—441 (1999)

Xilinx, Corp.: URL http://www.xilinx.com

Xilinx, Corp.: Forge compiler. URL http://www.lavalogic.com

Xilinx Corp.: Virtex-Il Pro' " and Virtex-Il Pro X Platform FPGAs: Complete Data Sheet
(2007). URL http://www.xilinx.com

Xilinx, Inc.: XC6200 Field Programmable Gate Arrays (1997)

Xilinx, Inc.: Virtex-5" 1.5V, Field-Programmable Gate Arrays (v1.7) — Advance Product
Specification (2001). URL http://www.xilinx.com

Xilinx, Inc.: Virtex-11" 1.5v, Field-Programmable Gate Arrays (v1.7) — Advance Product
Specification (2001). URL http://www.xilinx.com

Xilinx, Inc.: PowerPC® 405 Processor Block Reference Guide (2005). URL http://
www.xilinx.com

Xilinx, Inc.: MicroBlaze® Processor Reference Guide (2007). URL http://www.xilinx.
com

References 211

346. Yankova, Y., Kuzmanov, G., Bertels, K., Gaydadjiev, G., Lu, Y., Vassiliadis, S.: DWARV:

347.

348.

349.

350.

351.

352.

353.

Delft Workbench Automated Reconfigurable VHDL Generator. In: Proc. of the 17th Intl.
Conf. on Field Programmable Logic and Applications (FPL'07), pp. 697-701. Amsterdam,
The Netherlands, August 27-29 (2007)

Ye, Z., Shenoy, N., Baneijee, P.: A C Compiler for a Processor with a Reconfigurable Func-
tional Unit. In: Proc. of the 8th Intl. Symp. on Field Programmable Gate Arrays (FPGA’00),
pp- 95-100. ACM Press, New York, NY, USA (2000)

Ye, Z.A., Moshovos, A., Hauck, S., Banerjee, P.: Chimaera: A High-Performance Architec-
ture with a Tightly-Coupled Reconfigurable Functional Unit. In: Proc. of the 27th Annual
Intl. Symp. on Computer Architecture (ISCA’00), pp. 225-235. ACM Press, New York, NY,
USA (2000)

Young, M., Argiro, D., Kubica, S.: Cantata®: Visual Programming Environment for the
Khoros System. Comput. Graphics 29(2), 22-26 (1995)

Zhang, X., Ng, K.: A Review of High-Level Synthesis for Dynamically Reconfigurable FP-
GAs. Microprocessors Microsystems 24(1), 199-211 (2000)

Ziegler, H., Hall, M., Diniz, P.: Compiler-Generated Communication for Pipelined FPGA
Applications. In: Proc. of the 40th ACM/IEEE Design Automation Conference (DAC’03),
pp- 610-615. ACM Press, New York, NY, USA (2003)

Ziegler, H., Malusare, P., Diniz, P.: Array Replication to Increase Parallelism in Applica-
tions Mapped to Configurable Architectures. In: Proc. of the 18th Intl. Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC’05), Lecture Notes on Computer Sci-
ence (LNCS), vol. 4339, pp. 63-72. Springer, Heidelberg/New York (2005)

Ziegler, H., So, B., Hall, M., Diniz, P.: Coarse-Grain Pipelining on Multiple FPGA Ar-
chitectures. In: Proc. of the 10th IEEE Symp. on FPGA for Custom Computing Machines
(FCCM’02), pp. 77-86. IEEE Computer Society Press, Los Alamitos, CA, USA (2002)

List of Acronyms

ADRES
ALAP
ALU
AOP
API
ASAP
ASIC
ASIP
AST
CCM
CDFG
CDG
CFG
CISC
CLB
CPLD
CPU
CSD
CSP
DAG
DDG
DFG
DIL
DISC
DRESC
DRLE
DSE
DSL
DSP
EDIF
EPIC

Architecture for dynamically reconfigurable embedded systems
As late as possible

Arithmetic-logic unit

Aspect oriented programming
Application programming interface

As soon as possible

Application-specific integrated circuit
Application-specific instruction processor
Abstract syntax tree

Custom computing machine
Control/data flow graph

Control dependence graph

Control-flow graph

Complex instruction-set computer
Configurable logic block

Complex programmable logic Devices
Central processing unit

Common signed digit

Communicating sequential processes
Directed acyclic graph

Data dependence graph

Data flow graph

Dataflow intermediate language
Dynamic instruction set computer
Dynamically reconfigurable embedded system compiler
Dynamically reconfigurable logic engine
Design space exploration

Domain specific language

Digital signal processor

Electronic design interchange format
Explicitly parallel instruction computing

213

214

FCCM
FDCT
FFT
FIFO
FPAA
FPGA
FSM
FSMD
FU
GPP
HDL
HLS
HPDG
HTG
IEEE
ILP

1P

IR
ISA
I/0
JIT
JVM
LSB
LARA
LUT
MARGE
MSB
P&R
PE
PLD
PRISC
RAM
ROM
rDPA
REMARC
RFU
RISC
RPU
RTL
SIMD
SRAM
SSA
STG

Field-custom computing machine

Fast discrete cosine transform

Fast Fourier transform

First in first out

Field-programmable ALU arrays
Field-programmable gate arrays
Finite-state machine

Finite-state machine with data-path
Functional unit

General purpose processor

Hardware description language
High-level synthesis

Hierarchical program dependence graph
Hierarchical task graphs

Institute of electrical and electronic engineers
Instruction level parallelism

Intellectual property

Intermediate representation

Instruction set architecture

Input/output

Just in time

Java virtual machine

Least significant bit/byte

LAnguage for Reconfigurable Architectures
Look-up table

Malleable architecture generator

Most significant bit/byte

Placement and routing

Processing element

Programmable logic device

Programmable reduced instruction set computers

Random-access memory

Read-only memory

re-configurable data-path architecture
Reconfigurable multimedia array coprocessor
Reconfigurable functional unit
Reduced instruction-set computer
Reconfigurable processing unit
Register transfer level

Single instruction multiple data
Static random-access memory

Static single assignment

State transition graph

List of Acronyms

List of Acronyms 215

TDF Task description format

VHDL VHSIC (very high speed integrated circuit) hardware description
language

VLIW Very-long instruction width

VLSI Very large scale integration

Index

A

Abstract-machines compiler, 161-162

Abstract-Syntax-Tree, 52

ADRES. See Architecture for Dynamically
Reconfigurable Embedded Systems

ALU. See Arithmetic Logic Unit

Application Programming Interfaces (APIs),
38, 61

Application-specific instruction-set processors,
182

Application-Specific Integrated Circuit, 2

Architecture for Dynamically Reconfigurable
Embedded Systems, 16, 17

Arithmetic Logic Unit, 8

Array mapping approaches, 148

ASIC. See Application-Specific Integrated
Circuit

ASIPs. See Application-specific instruction-set
processors

Aspect-Oriented programming technique, 187,
188

AST. See Abstract-Syntax-Tree

Augmenting imperative languages, 178

B

Backward propagation, 70
Bit reversing, 74-75
Bit-level operation specialization, 78—-79
Bit-level transformations
bit-level optimizations
bit-value results, 74
definition, 72
of compiler, 73
bit-width narrowing

bit-width propagation, 70-71
in loop control variables, 68
static, 71-72
by nonstandard floating-point formats, 77
floating-point to fixed-point conversion,
76-77
Bit-width analysis
based on
dynamic run-time techniques, 70
run-time profiling, 69
by DeepC silicon compiler, 158
of variables, 68—69
static, 70
BitValue analysis, 70
Block floating-point formats. See Nonstandard
floating-point formats

C

C programming language
COBRA-ABS tool, 158
SPC compiler for, 157
Cameron compiler, 160
Canonical Signed Digit representation, 79—-80
CCA. See Configurable Compute Accelerator
CDG. See Control-dependence graph
CLBs. See Configurable-Logic-Blocks
Coarse-grained pipelining
concurrency, 144
fine-grained synchronization scheme,
144-145
Coarse-grained reconfigurable architectures,
14-16
applicability of compilation techniques to,
106

217

218

Coarse-grained reconfigurable architectures
(Continued)
bit reversal, 74-75
compiler
CoDe-X compiler, 165-166
data-flow intermediate language (DIL)
compiler, 164
DRESC compiler (see Dynamically
reconfigurable embedded system
compiler)
RaPiD-C compiler (see RaPiD-C
compiler)
XPP-VC compiler (see XPP-VC compiler)
FU sharing, 131
loop tiling, 91, 92
module generation techniques, 152
scaling operations, 77
Code motion
code hoisting and sinking, 84-85
in context of loops, 85-86
loop invariant, 86
Code transformations. See Bit-level transfor-
mations; Data-oriented transformations;
Function-oriented transformations;
Instruction-level transformations;
Loop-level transformations
Communicating sequential processes, 61, 159,
161
Compiler. See also FPGA-based systems
bit-level optimizations, 73-74
for reconfigurable architectures
coarse-grained pipelining of, 144
function inlining and outlining
concurrency and resource sharing, balance
between, 103-104
inner loop pipelining, 142
multiple data-path elements, 156, 165
scheduling algorithms, 151
software pipelining implementation, 143
temporal partitioning using loop distribution,
122-123
Compiler intermediate representation for
reconfigurable computing (CIRRF), 163
Compiler techniques
for bit-width and type inference analyses, 69
for mapping of array data to memories
array mapping approaches, 148
memory bank disambiguation, 146—147
Configurable Compute Accelerator, 133, 134
Configurable-Logic-Blocks, 12, 65
Control Units, 9
Control-dependence graph, 63
CSD representation. See Canonical Signed
Digit representation

Index

CSP. See Communicating sequential processes
CUs. See Control Units
Custom computing machines, 2

D

Data strip-mining, 101
Data-dependence graph, 63
Data-Flow Graphs, 52
and DFG Builder, 164
and DIL compiler, 164-165
and SSA representation, 129
bit-width propagation, 71
for partitioning, 118
for THR, 83
hardware implementation for pipelined
execution, 140-141
ILP, 110
without code hoisting, 85
Data-layout transformation, 100-101
Data-oriented transformations
and mapping, 55-58
data distribution, 95
data replication, 96
data reuse, 96-97
data-layout, reorganization of, 100-101
data-permutation, 101
scalar expansion, 99-100
scalar replacement
in RAM, 99
in registers, 97-99
Data-path synthesis tool, 166
DDG. See Data-dependence graph
Delft Workbench Automated Reconfigurable
VHDL (DWARV) compiler, 163-164
Design Environment for Adaptive Computing
Technology compiler, 159
Design-space exploration, 65
techniques for solving, 122, 183-184
DFGs. See Data-Flow Graphs
Digital signal processing, 12
DISC. See Dynamic Instruction Set Computer
Distributive transformation, 80-81
Domain-specific languages, 178-179, 181
DPSS. See Data-path synthesis tool
DSE. See Design-space exploration
DSP. See Digital signal processing
Dynamic Instruction Set Computer, 11
Dynamic run-time approach, 70
Dynamically reconfigurable embedded system
compiler (DRESC), 166-167

Index

E

Electronic design interchange format (EDIF),
161

F

Fast Fourier transform, 2
Fast prototyping and emulation systems, 2
FCCM. See Field-Programmable Custom
Computing Machines
FFT. See Fast Fourier transform
Field-Programmable ALU Arrays, 11
Field-Programmable Custom Computing
Machines, 8
Field-Programmable Logic and Applications,
8
Field-programmable-gate-arrays, 1, 8, 155. See
also FPGA-based systems
Fine-grained reconfigurable architectures,
12-13
applicability of compilation techniques to,
106
FU sharing, 131
loop tiling for, 91, 92
module generation techniques, 151-152
shift operation, 77
Fine-grained synchronization scheme,
144-145
Finite-state machine, 9, 156
for control unit, 4344
Fixed-point and floating-point data representa-
tion, 75
Floating-point to fixed-point conversion, 76
Fortran language, DEFACTO compiler for,
159
FPAAs. See Field-Programmable ALU Arrays
FPGA-based systems
compilers for (see also MATCH Compiler)
A C to fine-grained pipelining compiler,
158
abstract-machines compiler (see
Abstract-machines compiler)
Cameron compiler (see Cameron
compiler)
CHAMPION software design environ-
ment, 162
COBRA-ABS tool, 158-159
DeepC silicon compiler, 158
DEFACTO compiler (see Design
Environment for Adaptive Computing
Technology compiler)

219

DWARYV compiler (see Delft Workbench
Automated Reconfigurable VHDL)

Galadriel compiler, 161

MATCH compiler (see MATCH Compiler)

Nenya compiler, 161

ROCCC compiler (see Riverside optimiz-
ing compiler for configurable computing
compiler)

Sea cucumber (SC) compiler (see Sea
Cucumber (SC) compiler)

SPARCS tool (see Synthesis and
partitioning for adaptive reconfigurable
computing systems tool)

SPC compiler (see SUIF Pipeline
Compiler (SPC))

Streams-C compiler (see Streams-C
compiler)

FPGAs. See Field-programmable-gate-arrays
FPL. See Field-Programmable Logic and
Applications
FSM. See Finite-state machine
FU merging technique. See RaPiD-C compiler
Function-oriented transformations
function inlining, 101
and noninlined hardware implementation,
102-103

function outlining, 101

applications of, 103
recursive functions, 105

Functional unit (FU), 1, 8

ALU operation of, 24
data-path, 1
mapping of operations to, 129-130
merging of, 165
sharing, 131-133
with 2-input LUT, 12

G

Galadriel compiler, for Java bytecodes
translation, 161
Garp architecture, 18
General purpose processor (GPP), 1, 21, 33,
156, 182
CoDe-X compiler, 165

H
Handel-C compiler, 156

Hardware compilation
and high-level synthesis, 39—40

220

Hardware compilation (Continued)
customized, 41-45
for coarse-grained reconfigurable
architectures, 48—-49
generic, 4041
placement and routing, 49-50
Register-Transfer-Level/logic synthesis,
45-47
coarse-grained reconfigurable architecture,
156-157
Hardware execution techniques, 110
instruction-level parallelism
loop unrolling and, 111-112
nonhomogeneous execution units,
110-111
multitasking, 116
and access to shared resources, 117-118
coarse-grained, 117
partitioning, 118
predication and if-conversion, 114-116
hardware implementations for, 117
speculative execution
concurrent evaluation, 112—-113
memory access, 113
Hardware retiming, 137
Height reduction, 80. See also Tree-height
reduction
Hierarchical Task Graph, 63
High-level programming constructs, mapping
of
data selection constructs, 130-131
FU resource sharing, 131-132
operations to FUs, 129-130
reconfigurable function units, 132-134
scalar variables to registers, 127
SSA representation approach, 129
syntax-oriented hardware compilation,
128
High-level synthesis, 4, 39-40
customized, 41-45
for coarse-grained reconfigurable
architectures, 48—49
generic, 4041
placement and routing, 49-50
register-transfer-level/logic synthesis, 45-47
scheduling and temporal partitioning, 121
tools, 156
High-performance computing, 2
History-based and Learning based techniques,
187
HLS. See High-level synthesis
HTG. See Hierarchical Task Graph
Hybrid reconfigurable architectures, 16-18
compilers for

Index

Chimaera-C compiler, 167
Garp and Nimble C compiler, 168
NAPA-C compiler (see NAPA-C compiler)

I

Impulse-C, for targeting FPGA, 156
Input/Output Buffers, 9
Instruction-level parallelism (ILP)
abstract-machines compiler, 161
loop unrolling and, 111-112
nonhomogeneous execution units, 110-111
Instruction-level transformations
algebraic transformations, 77-78
code motion (see Code motion)
height reduction (see Height reduction)
operator strength reduction (see Operator
strength reduction)
Instruction-set architectures, 33, 179
Integer linear programming approach
inference of on-chip memories, for, 148
temporal partitioning, for, 121
Interconnection resources, 9, 30
Intermediate representation, 58, 181-182
1OBs. See Input/Output Buffers
IR. See Intermediate representation
IRs. See Interconnection resources
ISA. See Instruction-set architectures

J

Java thread model, 161
Just-In-Time (JIT), 186

L

Language for Reconfigurable Architectures
(LARA), 187-188
Latency-hiding techniques, 145-146
Look-up table, 12
Loop dissevering, 122-123
Loop invariant code motion, 85-86
Loop pipelining
for hardware, 139
in reconfigurable architectures, 184—185
innermost loops
nonpipelined hardware implementation
for, 142-143
pipeline vectorization, based on, 140
software pipelining, based on, 141-142
schemes, comparison of, 143

Index

Loop strip-mining, 94
definition of, 90
hardware implementation, 92-93
source code, to, 91-92
Loop-level transformations
loop merging and loop distribution, 94
scalar expansion and, 99-100
loop tiling, 94
loop strip-mining (see Loop strip-mining)
matrix multiplication, 90, 92
nested loops, 90
loop unrolling
data availability requirements, 88
hardware implementations, 91
instruction-level parallelism, 87, 89-90,
111-112
LUT. See Look-up table

M

Malleable architecture generator (MARGE)
tool, 159-160. See also Streams-C
compiler

Mapped occam program, 156

Mask operation, 70

MATCH compiler, 160

MATLAB, in reconfigurable computing, 3, 62

Memory accesses

array mapping approaches for, 148
memory bank disambiguation, 146—147
techniques improving, 148
data packing/unpacking, 149-150
pipelining, 148

Memory Elements, 9

Memory mapping optimizations, 185

MEMs. See Memory Elements

MIMO (Multiple-Input, Multiple-Output)
region, 134

MISO (Multiple-Input, Single-Output) region,
134

Module generation techniques, 151-152

Modulo graph embedding and modulo
scheduling technique, 50

Molen polymorphic processor system, 23—-24

MorphoSys architecture, 18

Multiple computing engines, mapping of, 182

Multiplexer merging technique. See RaPiD-C
compiler

Multitasking, 116

and access to shared resources, 117-118
coarse-grained, 117

221
N

NAPA-C compiler
C program mapping, 168
malleable architecture generator (MARGE)
use by, 169
stream-C language, 168
Nenya compiler, 161
Network-on-a-Chip (NoC), 10
Nonstandard floating-point formats, 77

(0)

Operator strength reduction (OSR)
bit manipulation operations, 78
on integer multiplications by constants,
79-80

P

P&R. See Place and routing
Packing and unpacking of data items
5-bit array elements, 149-150
and memory access, 149
Partitioning, 118
spatial (see Spatial partitioning)
temporal (see Temporal partitioning)
Peripheral Controller Interface (PCI), 22
PEs. See Processing elements
Pipeline vectorization, 140, 157
Pipelined execution. See Pipelining
Pipelining, 134
coarse-grained (see Coarse-grained
pipelining)
configuration, 145-146
data-path, 136-137
hardware retiming, 137
latency models for multiplier, 135-136
of memory accesses, 138-139, 149
PipeRench reconfigurable architecture, 15, 16
Place and routing, 9, 19, 49-50
PLDs, 155
Prefetching techniques, 145
Processing elements, 33

R

Range propagation analysis, 71
Rapid prototyping, 156
RaPiD reconfigurable architecture, 15

222

RaPiD-C compiler
during compilation, 165
space-loop notion, 165
RAW Machine architecture, 18
rDPA. See Reconfigurable Data-Path Array
architecture
Reconfigurable architectures, 1, 4-5
and nanotechnology, 189
back-end support
allocation, scheduling, and binding,
150-151
mapping, placement, and routing, 153
module generation, 151-152
challenges of, 191-192
characteristics features of, 8—10
coarse-grained (see Coarse-grained
reconfigurable architectures)
compilation process
research for, 181-187
solving challenges of, 187—-188
computational and execution models, 29-31
computing domains of, 2-3
development of
high-level programming tool, 178-179
performance portability, approaches for
solving, 180
program portability and legacy code
migration, 179-180
dynamic reconfiguration of, 24-28
fine-grained (see Fine-grained reconfig-
urable architectures)
granularity, 1011
and mapping, 19-20
coarse-grained reconfigurable architec-
tures, 14-16
fined-grained reconfigurable architectures,
12-13
hybrid reconfigurable architectures, 16-18
hardware compilation and high-level
synthesis, 39-40
customized high-level synthesis, 4145
generic high-level synthesis, 40-41
high-level compilation for coarse-grained
reconfigurable architectures, 48—49
placement and routing, 49-50
Register-Transfer-Level/logic synthesis,
45-47
hardware execution techniques (see
Hardware execution techniques)
input and output data bandwidth, 31
interconnection topologies, 20-21
limitations of, 3—4
origin of, 7-8

Index

pipelined execution enabled by (see
Pipelining)
system-level integration, 21-24
Reconfigurable Data-Path Array architecture,
14
Reconfigurable functional units, 22, 132
mapping computation to, 133-134
Reconfigurable processing unit, 4, 8, 33
computation operations, 153
focus on low-level optimization, 156
Reconfigurable processor, 23
Reconfigurable systems
generic compilation and synthesis flow of
back end phase, 37-38
computation translation to hardware,
58-59
computation-oriented mapping and
scheduling, 53-55
data-flow representation, 52-53
data-oriented mapping and transforma-
tions, 55-58
front end phase, 34-35
high-level source code, 51-52
middle end phase, 35-37
reconfigurable computing issues and,
59-65
Recursive functions, 105
Register-Transfer-Level, 45
Relatively Placed Macros, 19
Remote-procedure-call, 23
Resource Virtualization techniques, 187
Resource virtualization, in reconfigurable
architectures, 186
RFU. See Reconfigurable functional unit
Riverside optimizing compiler for configurable
computing compiler, 163
RP. See Reconfigurable processor
RPC. See Remote-procedure-call
RPMs. See Relatively Placed Macros
RPU. See Reconfigurable processing unit
RTL. See Register-Transfer-Level
RTL/logic synthesis, 45-47
Run-time profiling, 69

S

SA-C language, 62, 160

Scalar expansion, 99-100

SCORE. See Stream Computations Organized
for Reconfigurable Execution

Sea cucumber (SC) compiler, 161

Single-instruction-multiple-data (SIMD), 64

Single-Program-Multiple-Data, 64

Index

SoC. See System-on-a-Chip
Software pipelining
compiler implementations of, 143
inner loop pipelining based on, 140-141
Spatial partitioning
applications of, 124-127
minimization of communication between
partitions, 124
Spatial partitioning, for compilation, 156
Speculative execution
concurrent evaluation, 112-113
memory access, 113
SPMD. See Single-Program-Multiple-Data
SSA intermediate representation
for constructs mapping, 129
Stream Computations Organized for
Reconfigurable Execution, 18
Streams-C compiler, 159-160
Submicron and nanoscale computing systems,
2-3
SUIF pipeline compiler (SPC), 157
use by DEFACTO, 159
Synthesis and partitioning for adaptive
reconfigurable computing systems tool,
163
System-on-a-Chip, 22
Systolic array, 157

T

Task Description Format, 18
Task-and loop-level scheduling schemes,
53-54
TDF. See Task Description Format
Temporal partitioning
advantages of, 119
algorithmic approach, 121-122

223

applications of, 120, 125-127
in high-level compilation, 121
design-space exploration techniques, 122
spatial and, 118-119
using loop distribution, 122-123
with different communications costs,
119-120
Temporal partitions
loop splitting across, 123
minimizing number of, 122
THR. See Tree-height reduction
Transactional-based languages, 178
Tree-height minimization. See Tree-height
reduction
Tree-height reduction
distributive property, 80-81
reduction in execution latency, 82
schedule length, 83
selection points in control-flow intensive
constructs, 83—84

U

Unified Specification Model (USM), 63

A\

Value range analysis. See Range propagation
analysis

Very Long Instruction Word (VLIW), 9

X

XPP-VC compiler, 166
Xputer architecture, 14

	Compilation Techniquesfor Reconfigurable Architectures
	Copyright

	Preface
	Contents

	Chapter 1: Introduction
	1.1 The Promise of Reconfigurable Architectures and Systems
	1.2 The Challenge: How to Program and Compilefor Reconfigurable Systems?
	1.3 This Book: Key Techniques when Compilingto Reconfigurable Architecture
	1.4 Organization of this Book

	Chapter 2: Overview of Reconfigurable Architectures
	2.1 Evolution of Reconfigurable Architectures
	2.2 Reconfigurable Architectures: Key Characteristics
	2.3 Granularity
	2.3.1 Fine-Grained Reconfigurable Architectures
	2.3.2 Coarse-Grained Reconfigurable Architectures
	2.3.3 Hybrid Reconfigurable Architectures
	2.3.4 Granularity and Mapping
	2.4 Interconnection Topologies
	2.5 System-Level Integration
	2.6 Dynamic Reconfiguration
	2.7 Computational and Execution Models
	2.8 Streaming Data Input and Output
	2.9 Summary

	Chapter 3: Compilation and Synthesis Flows
	3.1 Overview
	3.1.1 Front-End
	3.1.2 Middle-End
	3.1.3 Back-End
	3.2 Hardware Compilation and High-Level Synthesis
	3.2.1 Generic High-Level Synthesis
	3.2.2 Customized High-Level Synthesis for Fine-GrainedReconfigurable Architectures
	3.2.3 Register-Transfer-Level/Logic Synthesis
	3.2.4 High-Level Compilation for Coarse-GrainedReconfigurable Architectures
	3.2.5 Placement and Routing
	3.3 Illustrative Example
	3.3.1 High-Level Source Code Example
	3.3.2 Data-Flow Representation
	3.3.3 Computation-Oriented Mapping and Scheduling
	3.3.4 Data-Oriented Mapping and Transformations
	3.3.5 Translation to Hardware
	3.4 Reconfigurable Computing Issues and Their Impacton Compilation
	3.4.1 Programming Languages and Execution Models
	3.4.2 Intermediate Representations
	3.4.3 Target Reconfigurable Architecture Features
	3.5 Summary

	Chapter 4: Code Transformations
	4.1 Bit-Level Transformations
	4.1.1 Bit-Width Narrowing
	4.1.2 Bit-Level Optimizations
	4.1.3 Conversion from Floating- to Fixed-Point Representations
	4.1.4 Nonstandard Floating-Point Formats
	4.2 Instruction-Level Transformations
	4.2.1 Operator Strength Reduction
	4.2.2 Height Reduction
	4.2.3 Code Motion
	4.3 Loop-Level Transformations
	4.3.1 Loop Unrolling
	4.3.2 Loop Tiling and Loop Strip-Mining
	4.3.3 Loop Merging and Loop Distribution
	4.4 Data-Oriented Transformations
	4.4.1 Data Distribution
	4.4.2 Data Replication
	4.4.3 Data Reuse and Scalar Replacement in Registersand Internal RAMs
	4.4.4 Other Data-Oriented Transformations
	4.5 Function-Oriented Transformations
	4.5.1 Function Inlining and Outlining
	4.5.2 Recursive Functions
	4.6 Which Code Transformations to Choose?
	4.7 Summary

	Chapter 5: Mapping and Execution Optimizations
	5.1 Hardware Execution Techniques
	5.1.1 Instruction-Level Parallelism
	5.1.2 Speculative Execution
	5.1.3 Predication and if-conversion
	5.1.4 Multi Tasking
	5.2 Partitioning
	5.2.1 Temporal Partitioning
	5.2.2 Spatial Partitioning
	5.2.3 Illustrative Example
	5.3 Mapping Program Constructs to Resources
	5.3.1 Mapping Scalar Variables to Registers
	5.3.2 Mapping of Operations to FUs
	5.3.3 Mapping of Selection Structures
	5.3.4 Sharing Functional Units FUs
	5.3.5 Combining Instructions for RFUs
	5.4 Pipelining
	5.4.1 Pipelined Functional and Execution Units
	5.4.2 Pipelining Memory Accesses
	5.4.3 Loop Pipelining
	5.4.4 Coarse-Grained Pipelining
	5.4.5 Pipelining Configuration–Computation Sequences
	5.5 Memory Accesses
	5.5.1 Partitioning and Mapping of Arrays to Memory Resources
	5.5.2 Improving Memory Accesses
	5.6 Back-End Support
	5.6.1 Allocation, Scheduling, and Binding
	5.6.2 Module Generation
	5.6.3 Mapping, Placement, and Routing
	5.7 Summary

	Chapter 6: Compilers for Reconfigurable Architectures
	6.1 Early Compilation Efforts
	6.2 Compilers for FPGA-Based Systems
	6.2.1 The SPC Compiler
	6.2.2 A C to Fine-Grained Pipelining Compiler
	6.2.3 The DeepC Silicon Compiler
	6.2.4 The COBRA-ABS Tool
	6.2.5 The DEFACTO Compiler
	6.2.6 The Streams-C Compiler
	6.2.7 The Cameron Compiler
	6.2.8 The MATCH Compiler
	6.2.9 The Galadriel and Nenya Compilers
	6.2.10 The Sea Cucumber Compiler
	6.2.11 The Abstract-Machines Compiler
	6.2.12 The CHAMPION Software Design Environment
	6.2.13 The SPARCS Tool
	6.2.14 The ROCCC Compiler
	6.2.15 The DWARV Compiler
	6.3 Compilers for Coarse-Grained Reconfigurable Architectures
	6.3.1 The DIL Compiler
	6.3.2 The RaPiD-C Compiler
	6.3.3 The CoDe-X Compiler
	6.3.4 The XPP-VC Compiler
	6.3.5 The DRESC Compiler
	6.4 Compilers for Hybrid Reconfigurable Architectures
	6.4.1 The Chimaera-C Compiler
	6.4.2 The Garp and the Nimble C Compilers
	6.4.3 The NAPA-C Compiler
	6.5 Compilation Efforts Summary

	Chapter 7: Perspectives on Programming ReconfigurableComputing Platforms
	7.1 How to Make Reconfigurable Computing a Reality?
	7.1.1 Easy of Programming
	7.1.2 Program Portability and Legacy Code Migration
	7.1.3 Performance Portability
	7.2 Research Directions in Compilation for ReconfigurableArchitectures
	7.2.1 Programming Language Design
	7.2.2 Intermediate Representation
	7.2.3 Mapping to Multiple Computing Engines
	7.2.4 Code Transformations
	7.2.5 Design-Space Exploration and Compilation Time
	7.2.6 Pipelined Execution
	7.2.7 Memory Mapping Optimizations
	7.2.8 Application-Specific Compilers and Cores
	7.2.9 Resource Virtualization
	7.2.10 Dynamic and Incremental Compilation
	7.3 Tackling the Compilation Challenge for ReconfigurableArchitectures
	7.4 Reconfigurable Architectures and Nanotechnology
	7.5 Summary

	Chapter 8: Final Remarks
	References
	List of Acronyms
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

